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Preface
The 14th International Conference on Geostatistics for Environmental Applications (geoENV2022) 
was held in Italy, at the Campus of the University of Parma. From June 22 to June 24, 2022, over 80 
experts on geostatistics gathered to discuss about environmental applications of this discipline. 

This book contains the abstracts and extended abstracts submitted to the conference and focusing 
on geostatistics applied to different fields such as: ecology, natural resources, environmental 
pollution and risk assessment, forestry, agriculture, geostatistical theory and new methodologies, 
health, epidemiology, ecotoxicology, inverse modeling, multiple point geostatistics, remote sensing, 
soil applications, spatio-temporal processes and surface and subsurface hydrology. 
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BAYESIAN U-NET FOR ORE TYPE UNCERTAINTY MODELING IN COMPLEX 
GEOLOGICAL ENVIRONMENTS  

Helga Jordão (1)* - Amilcar Soares (1) 

CERENA - Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal (1) 
* Corresponding author: helgajordao@tecnico.ulisboa.pt 

Abstract 

Deep learning had a substantial growth in the geosciences research community. There are several successfully 
applications examples such as in remote sensing, seismic interpretation, geomorphology and geomodelling. 
But still there is a slow uptake of these approaches in real applications and one reason for that is the lack of 
interpretability of deep learning approaches. Deep learning models are deterministic, producing a single 
estimate, or prediction without providing a quantitative assessment of uncertainty of the prediction made. 
Thus, when one use deep learning for a model prediction, it is important to quantify the attached uncertainty 
(a measure of the confidence of the predictions), since all models are subject to noise and model inference 
errors. This is critical in decision making and risk assessment applications.  

Several techniques for quantifying model uncertainty in deep learning have recently been proposed. Inside 
Bayesian Deep Learning methods, one of the most used is Monte Carlo dropout. Dropout is a regularization 
method used to reduce overfitting and improve generalization error in deep neural networks but it can also 
be used for providing uncertainty of model prediction. Dropout randomly drops some units of the neural 
network providing some randomness to the system. If used at inference, leads to multiple different parameter 
settings, and creates a probabilistic Bayesian Neural Network. By passing several times the same input we 
generate multiple realizations which can provide an estimate of the model uncertainty. 

In this paper, we introduce a Bayesian Deep Learning approach (Monte Carlo dropout) on a real case problem 
of the mining industry, ore type morphology modeling in complex geological environments, where 
uncertainty quantification of the boundaries of different ore types, plays a pivotal role in resources evaluation 
and uncertainty assessment. One of the main sources of risk in mining resources and reserves evaluation is 
the heterogeneity of the orebody. Therefore, is crucial to quantify the uncertainty of orebody boundaries, since 
the confidence in a feasibility study and investment or operational decisions must be based on relevant and 
reliable resources predictions. We implemented a probabilistic Bayesian U-Net for automatic delimiting the 
geological domains of an orebody, conditioned on drill-hole data, but also producing spatial uncertainty maps 
of those domains. 
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A GEOSTATISTICAL APPROACH FOR MERCURY SPATIAL PATTERNS ASSESSMENT IN 
SEDIMENTS IN AN OLD MINING REGION -THE CAVEIRA MINE CASE STUDY, 
PORTUGAL 

Natália Mota (1) - Rita Fonseca (1) - Joana Araújo (1) - Margarida Antunes (1) - Teresa Valente (2) - Ana 
Barroso (2) - Alexandre Araújo (1) - Teresa Albuquerque (3)*  

ICT, University of Évora, Geosciences, Évora, Portugal (1) – ICT, University of Minho, Geosciences, Braga, Portugal 
(2) - Polytechnique Institute of Castelo Branco (CERNAS) and ICT, University of Évora, Civil Engineering, Castelo 
Branco, Portugal (3) 
* Corresponding author: teresal@ipcb.pt 

Abstract 

Mercury pollution is significant in many former mining communities worldwide, including in developing 
countries. Anthropic contributions to environmental Hg pollution are mostly connected to fuel fossil 
emissions, industrial and mining activities. Among mining operations, gold exploration contributes to the 
highest Hg contamination rates, given the processes, widely used in the past, of mixing Hg with the gold-
containing ore, to separate this metal from the bulk impurities. 

This study, as part of the GeoMaTre project, an ongoing collaborative network (2021-2024) between the 
Polytechnic Institute of Castelo Branco and the University of Évora, Portugal, aimed to evaluate the potential 
risk of mercury pollution in stream sediments in the Caveira area, an abandoned Cu, Pb, Zn, Ag, and Au mine, 
included in the Iberian Pyrite Belt, at South Portugal. This mine corresponds to a Gossan developed on pyrite 
mineralization, with high gold and silver content at the official beginning of its exploitation, in 1863, having 
exhausted the reserves in these precious metals in the 1920s. Until the date of its abandonment (1966) the 
exploitation focused on the remaining metals (Cu, Pb, Zn) and S. Currently, the surrounding area of Caveira 
mine is essentially composed of areas of waste accumulation, from mining activity, with little or no vegetation. 

Thirty-three sediment samples were collected from within 0 to 10 cm depth, in a grid of 1Km x 1Km. Hg was 
determined in samples preserved at about 4ºC at the time of collection, through a mercury analyzer (NIC MA-
3000) based on thermal decomposition, gold amalgamation, and cold vapor atomic absorption spectroscopy 
detection.  

A multivariate preliminary study was conducted to evaluate the spatial distribution of Hg at the mine area 
and to determine the spatial clusters of Hg concentration. Analysis showed very high values (50-130µgg-1), in 
the sediments deposited in the mainstream crossing the mine heaps, with concentrations reaching 340 µgg-1 
in the meeting with the major waterway of the region.  In the latter, near the confluence zone, there is an 
attenuation of Hg levels, although still above the reference values for sediments, 0.3µgg-1, according to the 
Netherlands Regulation (2009), followed by many European countries. Since this is a complex mining area 
with diffuse distribution of the water system, levels significantly higher than reference values were also found 
in other small streams in the vicinity of the mine heaps. According to the Hg limits established by this 
regulation, mitigation measures are required when Hg is greater than 36µgg-1. Therefore, to identify spatial 
patterns of the Hg concentration distribution, geostatistical modeling was used throughout conventional 
variography followed by the Sequential Gaussian Simulation (SGS). The Mean Image of the one hundred 
performed simulations followed by local G clustering allowed the definition of the significant hotspots for 
contamination risk. The probability maps of exceeding, respectively, the 0.3µgg-1and the 36µgg-1 thresholds 
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were computed and acted as a measurement of the obtained clusters’ robustness, thus providing a faster and 
more intuitive way to verify whether the previously detected problematic zones are true of concern and in 
need of mitigation. 

 

Keywords: Caveira mine; Mercury; Sequential Gaussian Simulation; G clustering; Probability map. 
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STREAM SEDIMENTS POLLUTION: A COMPOSITIONAL BASELINE ASSESSMENT AT 
THE CAVEIRA MINE, PORTUGAL  

Araújo Joana (1) - Rita Fonseca (1)  - Natália Mota (1) - Alexandre Araújo (1)  - Margarida Antunes (2) - 
Teresa Valente (2) - Ana Barroso (3) - Teresa Albuquerque (4)* 

ICT, University of Évora, Geosciences, Évora, Portugal (1) – ICT, University of Minho, Geosciences, Braga, Portugal 
(2)  - ICT, University of Minho, Geosciences, Castelo Branco, Portugal (3) - Polytechnique Institute of Castelo Branco 
(CERNAS) and ICT, University of Évora, Civil Engineering, Castelo Branco, Portugal (4) 

* Corresponding author: teresal@ipcb.pt 

Abstract 

A high concentration of Potentially Toxic Elements (PTE) can affect ecosystem health. It is therefore essential 
that spatial trends of pollutants are assessed and controlled. River sediment pollution is widespread in mining 
communities around the world, including in developing countries. This study, as part of the GeoMaTre 
project, restoration of water bodies impacted by mine drainage, an ongoing collaborative project (2021-2024) 
between the Polytechnic Institute of Castelo Branco and the University of Évora, Portugal, aimed to evaluate 
the potential risk of PTEs pollution in stream sediments under the direct influence of Caveira mine, a Cu-Pb-
Zn-Ag-Au old mine included in the Iberian Pyrite Belt, South Portugal.  Quantifying pollution implies first 
the understanding of pollution-free stream sediment. Often, this background, or pollution baseline, is 
undefined or only partially known. Given that the concentration of chemical elements is compositional, as the 
attributes vary together, a compositional approach was used aiming to find a compositional balance, based on 
Compositional Data (CoDa) principles. A dataset of 33 samples was collected from within 0 to 10 cm depth, in 
a grid of 1Km x 1Km and thirteen chemical elements, including PTEs of variable toxicity (As, Cd, Co, Cr, Cu, 
Hg, Mn, Ni, Pb, Zn, V) and major elements from lithogenic sources (Fe, Al), were analyzed in preserved 
samples at about 4°C. The most extractable forms of metals (except for Hg) were obtained by partial digestion 
with aqua regia (HCl and HNO3) in a high-pressure microwave digestion unit, followed by ICP-OES analysis. 
Hg was analyzed determined by a mercury analyzer based on thermal decomposition, gold amalgamation, 
and cold vapor atomic absorption spectroscopy detection.  

Very high levels of Pb, As and Hg were found in sediments in a stream closer to the mine tailings pile and in 
an accumulation area where it flows into a larger waterway. These concentrations, reaching 3.8% Pb, 750µgg-1 

As and 340 µgg-1 Hg, are well beyond the intervention values imposed by the Netherlands legislation (2009), 
one of the only European legislation that includes reference values for freshwater sediments. In some of these 
locations, Zn contents above the legislated reference values (120 µgg-1) corroborate the nature of the ore 
previously exploited, pyrite mineralization enriched in Cu, Pb, Zn, Au, and Ag. 

The methodological approach implied the geological background selection in terms of a trimmed subsample 
that can be assumed as non-pollutant (Al and Fe) and the selection of a list of pollutants based on the based 
on expert knowledge and previous studies (As, Zn, Pb, and Hg); Identifying a compositional balance, 
including pollutant and non-pollutant elements, with sparsity and simplicity as properties, is crucial for the 
construction of the novel Compositional Pollution Indicator (CPI).  

A sequential stochastic Gaussian Simulation was performed on the new CPI. The results of the 100 computed 
simulations are summarized through mean image maps and probability maps of exceeding a given statistical 
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threshold, thus, allowing the characterization of the spatial distribution and variability of the CPI. A better 
understanding of the trends of relative enrichment and PTEs fate is discussed. 

 

Keywords: Caveira mine; Stream sediment; Compositional Indicator; Sequential Gaussian Simulation; Probability map. 
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THE GEOGRAPHICAL PATTERN OF LOCAL STATISTICAL DISPERSION OF 
ENVIRONMENTAL RADON IN EUROPE  

Peter Bossew (1)* 

Federal Office for Radiation Protection (BfS), Dpt. Ur-2, Berlin, Germany (1) 
* Corresponding author: peter.bossew@reflex.at 

Abstract 

Acknowledged as a significant health hazard, increasing attention has been given to indoor and geogenic 
radon for some 20 years. One part of the efforts is surveying in order to assess the geographical extent of the 
hazard. Results acquired in surveys serve to support decisions in radon abatement policy, aimed to reduce 
exposure and consisting in prevention, mitigation and remediation measures. One particular element is 
delineation of so-called radon priority areas, or areas in which the hazard is such that abatement measures 
should be implemented with priority. These areas are estimated from radon measurements supported by 
different modelling methods. 

Methods which are based on estimating local probabilities that radon concentration exceeds a reference level 
often rely on measures of local variability, expressed e.g. by the geometric standard deviation or the coefficient 
of variation, because these describe the shape of the distribution whose tail areas are the sought-after 
probabilities. Evidently, delineation of radon priority areas thus depends, apart from mean concentration, on 
dispersion within the area whose priority status shall be assessed. 

A second use of spatial variability measures of radon is survey planning, because the sample size necessary to 
estimate a mean with given precision depends on the dispersion of the quantity to be assessed. It is estimated 
through pilot surveys or derived from general knowledge.  

The large radon databases accumulated for years allow more detailed insight into spatial properties of 
dispersion, some of which are discussed in this papers, in the first place the relation between local dispersion 
and mean and sampling density. Not least, they also grant insight – so far mostly speculative – about the 
process, understood as a stochastic process, which generates the spatial dynamic. 

 
Keywords: Environmental radon; Spatial dispersion; Mapping 

1. Introduction 

Radon (Rn; here restricted to the isotope 222Rn) is an important hazard to human health, believed to cause 
100,000s of lung cancer fatalities world-wide annually through its equally radioactive short-lived progeny 
(e.g., Zeeb and Shannoun, 2009; Gaskin et al. 2018). One element on Rn abatement strategies is mapping. In 
Europe, an indoor Rn map based on over one million measurements has been generated (Cinelli et al 2019), 
consisting of statistics within 10 km × 10 km cells. The statistics include mean and standard deviation of the 
values and their logarithms. 

Spatial distribution of Rn within given units is distributed approximately log-normal (among many other, 
Bossew 2010). This is used to estimate exceedance probabilities (i.e. that a reference level is exceeded), which 
serve as decision base in Rn abatement policy. Another use is planning of surveys. In both cases, together with 
mean, dispersion within a spatial unit must be known, measured e.g. as geometric standard deviation - in the 
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first case, for estimating the distribution tail, in the second, to estimate the sample size necessary to estimate 
the local mean with required precision (Bossew 2021). 

The dependence of dispersion on the size of areal unit has been investigated previously (Bossew 2021). In 
addition, dependence of dispersion per areal unit on the mean has been identified (Dubois et al. 2010), which 
exceeds the familiar proportional effect.  

The physical origin of this “super-proportional” effect has not yet been explained. In this paper, the effect is 
shown along empirical data as well as its consequences for estimation of local Rn hazard through calculation 
of exceedance probability. Possible reasons are discussed, stemming (1) from data realm (spatial observation 
density, data uncertainty which may inflate sample dispersion) or (2) from the fundamental principle that 
generates the about-lognormal distribution (e.g. multiplicative cascades related to the multi-fractal nature of 
generating natural processes). In any case, the effect should be taken into account for modelling. 

2. Material and Methods 

Data analyzed here are taken (1) from the database underlying the European Indoor Radon Map (EIRM), part 
of the European Atlas of Natural Radiation, Cinelli et al. (2019). The database consists of statistics within 10 
km × 10 km cells aligned to the European LAEA (Lambert azimuthal equal area) system. Each case (cell) 
contains the following statistics: n (number of original data), AM (arithmetical mean), SD (standard deviation), 
AML and SDL (AM and SD of ln-transformed data), minimum, median and maximum. The statistics are built 
by national competent authorities per country; the original data are not available to the authors of the EIRM 
for privacy and data protection reasons which are particularly sensitive for indoor Rn data. The version of the 
database used (3/2019) is based on about 1.2 million original data. It is not publicly available. (2) Additionally, 
a newer dataset of Germany only (2021) is investigated, based on about 58,000 original data (also not public). 

3. Results 

3.1. Log-normality 

Under assumption of log-normality (LN), we have m = exp(µ+s²/2) and s²=exp(2µ+s²)(exp(s²)-1), where m and 
s – the mean and standard deviation, sample estimates AM and SD, µ and s - the analogues for the ln-
transformed population, sample estimates AML and SDL. Under LN, AM and AM’:= exp(AML+SDL²/2) must 
be equal, as must be SD² and SD’² according to the formula above. 

 

 

Figure 1 – Maps of cells (marked red) deviating from LN (see text). In this and following maps: North is up, axis 
units: m. 
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This can be tested by t-test (unequal variances) for the means AM and AM’, and by F-test for the variances. 
p>0.05 are necessary conditions for LN, while p<0.05, sufficient for deviation of LN. For the European data, 
one finds p(t)<0.05 and p(F)<0.05 for 0.36% and 2.7% of all cells, respectively, which can be considered a 
sufficiently low rate of deviation from LN, to call Rn LN within 10km×10km cells in acceptable approximation. 
The geographical distribution of cells deviating from LN are shown in Figure 1. The pattern of deviation which 
appears in particular for p(F)<0.05 has not yet been further investigated. For Germany, the rate of deviating 
cells is even lower, 0.12% and 0.56%, respectively. 

 

3.2. Bias of standard deviation 

The sample standard deviation is biased, which under normality – assumed for the log data - can be corrected, 
SDLcorr = SDL Ö((n-1)/2) G((n-1)/2)/G(n/2) (derivation e.g. in stackexchange 2012). An acceptable, frequently 
used approximation consists in replacing the common Bessel correction (n-1) in the sample SDL by (n-3/2) 
(e.g., Brugger 1969). Gurland (1971) proposed the correction factor 1+1/(4(n-1)). For n=5, the exact correction 
factor equals 1.064, simple approximation 1.069, Gurland: 1.063. The raw variance SDL² is unbiased. The bias 
problem of SD is more serious for autocorrelated samples, which is actually the normal case; no easy solution 
for the 2-dim (i.e. spatial) case is known to me. 

However, here we deal mostly with the variance and the geometric standard deviation GSD. In analogy to the 
geometrical mean, GM:=exp(µ), it is defined GSD:=exp(s) or exp(SDL) for the sample estimate. Under LN, the 
sample GSD can be shown by simulation (I am not aware of an analytical treatment) to be almost unbiased if 
based on the common Bessel-corrected SDL.  

  

Figure 2 – Dependence of the empirical GSD on sample size. True population GSD=2 assumed. 

The bias problem appears therefore alleviated, but still present. Fig. 2 shows the sampling GSD in dependence 
of sample size (n). For the simulation, true GM=100 Bq/m³ (which does not matter) and GSD=2 was assumed 
and the empirical GSD of n values was computed. The points in the graph are means over 10,000 realizations. 
For low populated cells, the GSD is therefore underestimated up to about 5%. However, the bias depends on 
GSD: For GSD> about 2.5, the bias is positive. 

For the real-world datasets, the relations of mean GSD per sample size are shown in Fig. 3. It seems that for 
low n (up to about 10 or 20) the empirical graphs reflect the bias effect. This can however not explain the shape 
for higher n.  
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Figure 3 – Dependence of the mean empirical GSD, áGSDñ, within cells on sample size (n) per cell. Left: German dataset, 
Right: European dataset. Red: Mean GSD of cells with n measurements; blue: mean GSD of cells with ³ n measurements. 

3.2 Geographical distribution of the geometric standard deviation 

The European dataset consists of 20,328 cells with n³2 measurements. The AM(GSD)=2.08, the median equals 
1.95. For the new German dataset, there are 2,457 cells (n³2). The AM equals 1.81, the median, 1.72. The reason 
for the difference may be data definition: All Rn concentrations refer to residential rooms on ground floor; in 
Germany, buildings with full basement are defined as additional standard condition. Presence of basement is 
an important controlling factor and the additional constraint therefore reduces dispersion. German data are 
standardized per model, but it seems that model uncertainty introduces less variability than is removed by 
standardization.  

Figures 4a and 4b show number of data n (i.e. observation density), GSD and AM per 10km×10km cell. One 
can visually notice the association between the statistics. The association is less clear in low populated cells, 
which is no surprise because few observations per 100km² are hardly representative, given the high spatial 
variability of Rn also in small-scale. (A less noisy, interpolated map taking advantage of geology as trend 
predictor has been shown by Elío et al. 2019). 

 

3.3. Dependence of GSD on GM and logarithmic proportional effect 

(The text of this par. is partly taken from Bossew 2021.) Fields of positive definite physical quantities seem to 
have the general property that local (within a neighborhood) dispersion increases with their local level. This 
is called proportional effect (e.g., Manchuk et al. 2006, 2009) and can cause troubles in geostatistics. While for 
variables ~N(µ,s), SD=s and AM=µ are independent, for LN(µ,s), SD= AMÖ(exp(s²)-1), i.e. they are 
proportional. Assuming local log-normality (or “permanence”, e.g. Agterberg 1984; which ideally holds for 
LN multifractals, section 4.3), the proportional effect follows. Reversely, assume a power-type relationship 
between the local SD and the local AM (which seems to be realistic), SD=a AMb. Then CV = SD/AM ~ AMb-1, 
i.e. the CV is slightly spatially variable. In the LN case and with some algebra, one finds, 

. 
A functional dependency between GSD or s and GM and µ exists too, as a consequence, but it cannot be 
written analytically. For b=1, this becomes the “pure” proportional effect and CV (=a, in this case), GSD are 
spatially constant. Here we are concerned with the apparently realistic case b>1, or “superproportional effect”. 
Higher variability in high-Rn areas has indeed been empirically observed (e.g., Bossew et al. 2008, Dubois et 
al. 2010). 

Define w:=ln(exp(SDL²)-1). According to the above model, w is linearly related to ln(AM), w=a*+b*ln(AM) 
with a*=2 ln(a) and b*=2(b-1). Fig. 5 shows the scatter plots (w, ln(AM)) for the European and German datasets 
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(for n³nmin=10 to reduce noise). For the “normal” case, b=1, b*=0, no slope would be visible. (Scatter plots (GSD, 
ln(AM)) and (CV,AM) look similar.) For Europe, one finds a»0.38 and b»1.18, for Germany, a»0.13, b»1.43 (the 
parameters depend slightly on nmin.). The reason for the differences is unclear; either the model is insufficient 
or its parameters are themselves subject to regional variability, for whatever reason. It seems that this heuristic 
model makes sense until a theoretically grounded one has been found. 

 

 

Figure 4a – European indoor Rn dataset (version 2019): n – number of observations per cell; GSD – geometrical standard 
deviation, AM – arithmetical mean Rn concentration per 10km×10km cell. 
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Figure 4b – German indoor Rn dataset (version 2021): n – number of observations per cell; GSD – geometrical standard 
deviation, AM - arithmetical mean Rn concentration per 10km×10km cell. 

   

Figure 5 – Dependence of w (transformed empirical GSD) on cell AM. Left: European, right: German dataset. 

 

3.4. Exceedance probability 

Under LN(µ,s²), the probability that Z exceeds a threshold or reference level z, equals p(z):=prob(Z>z)= 
(1/2)(1+erf((µ-ln z)/(sÖ2)))=1-F((ln z-µ)/(sÖ2)). Therefore, estimation of exceedance probability from the LN 
model depends on the choice of s: from individual data; assuming a constant s; or a modelled s. For unknown 
µ and s, this has to be estimated from the data based on the sampling distributions of p(z). Following 
Liebermann & Resnikoff (1955) and especially for Rn, Murphy & Organo (2008) (apparently with some 
mistakes in their eq. 13), p(z)=Beta(ub,b), Beta – the cumulative symmetric beta distribution with b=(n-2)/2 and 
ub=max[0,(1-(ln RL-AML)/(SDL Ö(n-1))]. Beard (1960) suggests p(z)=tn-1[ut Ö(n/(n+1))], 

ut=(ln RL-AML)/SDL; used in Bossew et al. (2015) and also in the following. 

A common definition of Rn priority areas (RPA) is p(300 Bq/m³)³0.1 (e.g., Bossew 2018). In Fig. 6, RPAs are 
mapped in a part of Central Europe (chosen because over entire Europe the differences are more difficult to 
recognize) according this definition; in p(I), estimated with GSD=1.95 (median over Europe); p(II): with 
empirical SDL (Fig. 4a, SDL=ln GSD); p(III): modelled GSD according section 3.3, with a=0.41 and b=1.16. 

One notices that the gross patterns are similar, but that locally there are significant differences. In the future, 
the analysis may be refined by Bayesian reasoning, e.g. using p(III) as prior to estimate p(II). 
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Figure 6 – Radon priority areas (red) in Central Europe, defined as prob(Rn>300 Bq/m³)³0.1, calculated with 3 different 
models. Blank: cells with less than 2 measurements. 

4. Discussion 

The observed dependence of dispersion (GSD or CV) per cell on its mean may have different physical or 
statistical reasons. The following have been identified as possible so far: Data uncertainty and generating 
process as physical and estimation bias as statistical cause. Further may emerge in future investigation. 

4.1. Data uncertainty  

Relative uncertainty (unc) is higher for lower Rn concentrations. No commonly accepted unc model for usual 
indoor Rn measurements (by alpha track-etch detectors) exists; after all, different detector brands as used 
across Europe have different uncertainty. However, a model of decreasing unc leads to GSD decreasing with 
mean, as shown with the following artificial, but about plausible model: unc(z)=u1+(u2-u1)(z1/z)a, with u1=0.1, 
u2=0.3, z1=10 Bq/m³, a=0.6523 such that unc(50 Bq/m³)=0.17 and unc®u1 for z®¥. 

Rn concentration was sampled ~LN(µ,s²), exp(s)=GSD=2 assumed true spatial dispersion; then z’:= z(1+u), 
u~N(unc(z),sunc), sunc=1 assumed (in fact unknown); from several thousand realizations of z’, which is the 
“observed” concentration, the GSD was computed and plotted in Figure 7 (error bars over replicates of 1000 
realizations). As expected, this uncertainty model leads to dispersion inflation above the theoretical population 
dispersion s (=ln(2)) or GSD=2, but cannot explain the increase of GSD with mean as observed in the real 
world. 

  

Figure 7 – Dependence of GSD on GM for an about realistic uncertainty model. True population  
GSD=2 assumed. 
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4.2. Sampling effect  

The empirical GSD is very slightly biased. Often in environmental surveys, areas which are known or 
suspected for higher levels of the investigated quantity are sampled preferentially. In areas with higher levels 
sample density would therefore be higher (i.e. more measurements per cell), and consequently, due to the bias, 
the observed GSD higher. However, as shown in section 3.2, this could explain the effect only for low sample 
densities. 

4.3 Generating process  

The spatial variability of radon (geogenic Rn and indoor Rn which is largely controlled by the former) depends 
on the one of geogenic reality, represented by geology. Since about 1950, there has been much discussion about 
conceiving geochemical variability as result of multiplicative cascade, leading to multi-fractality and local LN 
(depending on the cascade model), not to be discussed further here (see e.g. literature quoted in Bossew 2021, 
section 2.4). However, the regional variability of the dispersion cannot be explained with a simple de Wijs 
model, which leads to constant GSD. One may hypothesize that the splitting factors are not geographically 
constant, or that the cascades are not equally developed in all geological regions. It seems that the first option 
can indeed give rise to the observed effect (to be further investigated elsewhere). 

5. Conclusions 

The availability of large Rn datasets – generated as a consequence of radon abatement policy which includes 
Rn surveys - allows discovering and investigating statistical effects which have so far been unknown. One key 
quantity in survey planning and in estimation of local exceedance probability and in consequence, status as 
radon priority area, is local dispersion. It has been shown that it is not spatially constant but slightly depends 
on the local mean. Exceedance probability can be estimated by geostatistical methods, typically indicator 
kriging or conditional simulation. If, on the other hand, one attempts to estimate it from data, as done here, 
much care has to be taken to estimate the dispersion (GSD) as correctly as possible. Applying a mean GSD 
(model p(I)) is probably a too rough approximation. 
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SPATIOTEMPORAL PREDICTIONS OF MULTIPLE AIR POLLUTION DATA: A CASE 
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Abstract 

Air quality is one of the most serious issues for numerous world’s major cities. Due to the dangerous effects 
of outdoor air pollution to human health, the International Agency for Research on Cancer has classified air 
pollution as carcinogenic to humans. Several studies have established a cause-and-effect relationship between 
high concentrations of common air pollutants, such as nitrogen dioxide (NO2), carbon monoxide (CO), 
ground-level ozone (O3), and particulate matter (PM2.5 and PM10) and the development of respiratory 
diseases. In the modern society, the advanced systems for the continuous monitoring of pollutants’ 
concentrations have become fundamental to keep control of the air quality and support the policy decision 
makers to promptly act to prevent environmental risks.    

In Europe, the European Environment Agency (EEA) collects and maintains European air quality database, 
consisting of multi-annual time series of air quality measurements for the air pollutants recorded at the 
environmental stations of the monitoring networks of the EU Member States. Such large datasets can be 
adequately analyzed by multivariate spatiotemporal geostatistical methods for modelling and prediction, in 
order to obtain further information about the air quality over the area of interest. In particular,  

- spatiotemporal variability scales, 

- relationships in space-time among two or more air pollutants, 

- possible air pollution levels at unobserved points, 

- probabilities of exceeding a limit of attention, 

represent additional information which can be of interest for both researchers and environmental decision-
makers. 

In the literature, the spatiotemporal linear coregionalization model represents the most common model used 
to describe the correlation in space-time which characterizes the multiple variables under study. Thanks to its 
computational flexibility, the above model has been used in several studies and recently some computational 
advances have been proposed with the twofold aim of choosing the most appropriate basic models 
(covariances) at the different spatiotemporal variability scales shown by the data, as well as simplifying the 
modeling stage. The fitted model is then used to obtain stochastic predictions through cokriging: in this stage 
of the analysis, the space-time linear coregionalization model with different basic covariance models allows 
the data scientists to obtain reliable predictions for the pollutant of interest, over the spatiotemporal domain. 

In this paper, the above-mentioned tools have been used to deeply study air pollution in Germany, where 
nitrogen dioxide and particulate matter pollution are still issues in metropolitan German cities. On the basis 
of air quality EEA database, the hourly measurements of PM10, PM2.5 and NO2 recorded during 2021 at 
several monitoring stations over Germany have been analyzed. In particular, a linear coregionalization model 
based on mixture models, related to different scales of spatio-temporal variability, has been fitted to the 
empirical multivariate correlation matrix. Then, stochastic predictions for each analyzed pollutant have been 
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obtained by spatiotemporal cokriging interpolation and finally, through nonparametric estimation methods 
applied in the multivariate case, risk maps of the probability of exceeding some fixed pollution thresholds 
have been realized for the pollutants under study. 
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GEOSPATIAL MODEL OF COMPOSITION OF WATER SERVICE LINES IN FLINT, MI: 
VALIDATION USING EXCAVATION DATA AND A NEW COMPOSITIONAL 
GEOSTATISTICAL APPROACH  

Pierre Goovaerts (1)* 

Biomedware, Inc., Ann Arbor, United States (1) 
* Corresponding author: goovaerts@biomedware.com 

Abstract 

In the aftermath of Flint drinking water crisis, a service line replacement program was implemented to identify 
lead and galvanized service lines (SL) connecting residences to Flint’s water system and replace them. This 
program led to the excavation and inspection over a 3-year period (2018-2020) of a total of 26,750 lines, 
representing close to 50% of all tax parcels in the city of Flint. These recent data were used to validate an earlier 
geospatial model created by residual indicator kriging to predict the likelihood that a home has a lead, 
galvanized or copper SL based on neighboring field data (i.e., house inspection conducted in 2017 at 3,254 
homes) and secondary information (i.e., construction year and city records). Receiver Operating Characteristic 
Curves indicated an average frequency of detection (i.e., Area Under the Curve (AUC)) of 0.9 for copper and 
galvanized service lines, and 0.6 for lead SLs. Predicting the composition of SL at unmonitored residences by 
indicator kriging, however, can result in negative probabilities of occurrence and probabilities that do not sum 
to 1. These limitations were overcome by adopting simplicial indicator kriging whereby data undergo a log-
ratio transform before the geospatial analysis and mapping. This first application of a compositional approach 
to service line data improved the detection of lead service lines (AUC= 0.74 vs 0.6) while providing coherent 
predictions. As for the traditional (i.e., non-compositional approach), better predictions are obtained when 
incorporating secondary information and there is no benefit in using cokriging to account for multiple SL data 
at each location as it is an equally-sampled or isotopic case.  
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GEOSTATISTICAL MAPPINGS OF INDOOR RADON CONCENTRATIONS DATA IN 
FRANCE  

Jean-Michel Metivier (1)* - Claire Greau (1) - Nahla Mansouri  (1) 
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* Corresponding author: jean-michel.metivier@irsn.fr 

Abstract 

Radon is a colorless and odorless radioactive gas, naturally present in soils, in greater quantities in granite, 
volcanic massifs, some shales and sandstones. The health risk is mainly due to the presence of radon in the 
indoor air of houses in which it can accumulate, depending on their location, design and ventilation. Radon 
has been classified by the International Agency for Research on Cancer as "certain pulmonary carcinogen" 
since 1987; it is the second leading cause of lung cancer, after tobacco. 

The study proposed here carries out a geostatistical study on the scale of the French territory from more than 
30,000 measured values.  

For geolocated data, an OK was performed. The geocoded data at the centroid of the municipality were also 
taken into account and an OK with change of support (deconvolution) was carried out. 

With a high spatial variability, by calculating the excess percentage of reference values, it is already possible 
to discriminate areas for which the radon concentrations in the houses appear higher.
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INTERPOLATED SURFACES AS MAPPING UNITS FOR BINARY CLASSIFICATION OF 
RADON PRONE AREAS: A CASE-STUDY FROM CENTRAL PORTUGAL  
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CITEUC, Department of Earth Sciences, University of Coimbra, Coimbra, Portugal (1) 
* Corresponding author: gustavo.psl96@gmail.com 

Abstract 

Radon is a naturally occurring radioactive gas that is formed from the decay of Radium present on rocks and 
soils. This gas accumulates into the dwellings up to indoor radon concentration (IRCs) that could be a major 
health concern. It exposes the lungs to ionizing radiation, increasing the risk of lung cancer. The European 
Council Directive 2013/59/EURATOM establishes that Member States should identify Radon Prone Areas 
(RPA), where a significant percentage of dwellings have IRC above the national reference level. How to map 
these areas is still a topic under debate. The definition of the basic mapping unit is an important pillar of the 
methodologies and are per se one of the divergences. It could be a grid cell, a lithological unit or an 
administrative unit. Map scale is another important characteristic, since data can refer to a regional scale or to 
a smaller one (e.g., municipal scale). Inside a RPA identified at a regional scale, as the detail and variability 
increase at smaller scales, it’s possible to differentiate smaller RPAs and non-RPAs, or statistically differentiate 
areas with higher and lower priority, according to the percentage of dwellings above the RL, for mitigation 
purposes. 

Dwellings’ locations are spatially biased, because they agglomerate into towns. This bias, that intrinsically 
extends to IRC distribution, is not well suited for the most common methods of geostatistics. Descriptive or 
inference statistic are frequently used on IRC or other proxy variables. The concept of RPA or non-RPA is 
binary and thus a binary classification system should be optimized. At a municipal scale, the mapping units 
can greatly impact the results. Reducing the grid cell size would increase the number of grid cells without 
data. Increasing it, the detail vanishes and the map loose spatial variability. A cost-benefit relation should be 
considered. The use of lithological limits at that scale would suffer the same lack of intern variability. 

Our work aims to find an optimal classifier limit on interpolated surfaces of a proxy variable of IRC, namely 
Total Gamma Radiation (TGR), through Receiver Operating Characteristic (ROC) curve analysis, using a 
region of Central Portugal as a case study. TGR data can be spatially unbiased and so is suited for the most 
common geostatistical methods like ordinary kriging. The most promising advantage of the use of interpolated 
surfaces is the variability detail preserved in the ROC curve analysis and passed to the map of RPAs, with 
TGR isolines as the mapping units. The Matthews Correlation Coefficient values obtained (0.33 and 0.25 for 
the two studied areas) indicate a good correlation between the observed and predicted binary classifications, 
comparable to results obtained in other studies that use grid cells as mapping units. The resulting binary 
classifications using interpolated surfaces are region-specific and should not be extrapolated to other areas. 
Future work is aiming to study the uncertainty of the RPA map associated to the interpolations. Geostatistical 
simulation techniques can generate multiple interpolated surfaces, each used to establish an optimal classifier 
limit whose originate multiple RPA maps.  
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Abstract 

One of the most critical risk factors to human health and environment is represented by air pollution, since it 
can cause cardiovascular diseases, lung cancer, chronic, acute respiratory diseases, as well as damages to the 
ecosystem. The study of air pollution concentration has to consider that it is vehiculated in the atmosphere 
and that it can considerably change over time and space. 

The purpose of this work is to apply a three-level multivariate model to detect the key spatio-temporal 
determinants influencing air quality in Apulia region. For this reason, the dataset of the concentrations of the 
most harmful air pollutants (such as particulate matter, ground-level ozone and nitrogen dioxide), collected 
by the ARPA (Regional Agency for the Protection of the Environment) through the monitoring network of air 
quality stations is considered together with the observations related to some meteorological variables (such as 
atmospheric pressure, rainfall, atmospheric temperature, wind velocity), as well as the information on the type 
of area where the monitoring stations are located (traffic/city center, residential, rural and industrial sites). In 
particular, the pollutants and the meteorological variables are measured in 23 monitoring stations distributed 
in Apulia region, during the year 2019. 

The model is fitted in order to assess the dependence structure of the three above mentioned pollutants (PM, 
O₃ and NO₂) from the meteorological variables (such as Atmospheric Pressure, Rainfall, Atmospheric 
Temperature, Wind Velocity) and the type of area where the monitoring stations are located (traffic/city center, 
residential, rural and industrial sites). This model is also exploited in combination with the geostatistical 
techniques, for prediction purposes, over space and time. 
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Abstract 

Weather-based forecasting models play a major role in agricultural decision support systems (DSS) but 
warnings are usually computed at regional level due to a limited amount of automatic weather stations (AWS). 
Farmers have to refer to the nearest AWS but recommendations are not always adapted to their situation. 
Spatialization could be a solution to estimate weather conditions in farmer’s field but it must meet specific 
operational constraints: near real-time spatialization, high temporal resolution and robust methods. 

This is the goal of the Agromet platform (www.agromet.be) an operational web-platform designed for real-
time agro-meteorological data dissemination at high spatial (1 km x 1 km grid) and temporal (hourly and 
daily) resolution in Wallonia, southern part of Belgium. Two meteorological parameters are interpolated: air 
temperature and relative humidity. 

The poster will present the methodology used to choose the best spatialization models, the main conclusions 
and some research perspectives for the Agromet platform. 

Material and method 

Two datasets of meteorological observations are used: a first dataset comes from the Pameseb network of the 
Walloon Agricultural Research Centre CRA-W (28 selected AWS) and a second one comes from the Royal 
Meteorological Institute network (8 selected AWS). Five algorithms of spatialization are tested: nearest 
neighbor, inverse distance weighted, multilinear regression, ordinary kriging and kriging with external drift. 
Four explanatory variables are tested: longitude, latitude, elevation (all three static variables) and gridded 
weather forecasts (a dynamic variable). 

Models are trained using two years of hourly and daily air temperature and relative humidity measurements. 
Quality of the prediction is assessed by a leave-one-out cross validation. The mean absolute error is used as 
performance indicator. In addition to the overall performance scores, a more in-depth analysis of "worst cases" 
is carried out to understand the reliability of the scenarios. 

Main conclusions 

Kriging with elevation as external drift is the scenario with the best score in all cases i.e. for both temperature 
and humidity and for hourly and daily steps. Integrating weather forecast as a dynamic explanatory variable 
seems not to improve the quality of the spatialization but this requires further studies. Enriching the training 
dataset by increasing the number of AWS (from 28 to 36) does not dramatically improve the overall 
performance score but the issue is complex: the positive or negative impact of the integration of additional 
stations differs both by scenario and by station. 
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This first operational version of the Agromet platform is a solid foundation on which to base future 
developments. However, under certain atmospheric conditions like temperature inversion, local weather is 
not well modelized and the impact on DSS simulations must be assessed. 

Research perspectives 

Future research will focus on a better simulation of local weather conditions at mesoclimate scale suitable for 
agronomic models (potato late blight, orange wheat blossom midge and wheat phenology model). 

Possibilities for improvement are: adding new explanatory variables (meteorological satellite images, weather 
forecasting model outputs), integration of farmers AWS to increase the size of the training dataset or using 
new prediction methods from machine learning (random forests, neural networks).
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Abstract 

Sequential indicator simulation is a widely used method for simulation of variables in 3D geological modeling, 
which can be utilized not only for continuous variable but also for categorical variables. This method is 
designed to aid in the characterization of uncertainty on the structure or behavior of natural geological 
systems. However, there are legitimate criticisms against the sequential indicator simulation technique. 
Among others, the traditional algorithm is not able to deal with the non-stationary assumption of geological 
domains, as it is conventionally built upon the stationary properties of such variables. This paper addresses 
the problem of sequential indicator simulation for modeling the non-stationary geological domains. A 
machine learning algorithm called logistic regression is proposed to model the spatial probabilistic variability 
of the non-stationary geological domain by using only the conditioning data. Logistic regression is a machine 
learning classification algorithm used to predict the probability of a categorical dependent variable. In logistic 
regression, the dependent variable is a binary variable containing data coded as 1 (yes, success, etc.) or 0 (no, 
failure, etc.). In other words, the logistic regression model predicts a dependent variable as a function of one 
independent variable. In this paper, we deal with three categories, meaning that there is more than one 
possible categorical outcome. As a consequence in this case, we consider it as a “Multinomial Logistic 
Regression”. This machine learning method allows the creation of a probability map for each categorical 
variable, which in our proposed method; they are considered as geological domains. This map can then be 
used as soft information (secondary data) in sequential indicator simulation to generate the non-stationary 
geological domains. To test the algorithm, a synthetic map is simulated, where the geological domains show 
a strict heterogeneity. We used this as the reference map to evaluate the performance of the algorithm. Then, 
the map is sampled randomly to obtain a set of conditioning data. The conditioning data is split into two sub-
datasets - test and train values. The 20% of the conditioning data is considered for the test target points and 
the rest of 80% is employed as the train dataset. Using Multinomial Logistic Regression method, a machine 
learning system is trained and tested using the corresponding datasets. The obtained regression model is then 
used to predict the probability of each geologic domain at each single target location of the reference map. 
These maps are then used as soft information in one of the variants of sequential indicator simulation 
algorithm that uses non-stationary simple kriging with residuals from the locally varying mean probabilities. 
The proposed algorithm is applied to compare the results with the traditional sequential indicator simulation 
algorithm, which does not use soft information. This comparison showed that the Multinomial Logistic 
Regression algorithm is properly able to model the non-stationary geologic domain in the region and one can 
use it for modeling the heterogeneity.  

 

Keywords: Sequential indicator simulation; Logistic Regression; Categorical variable; Non-stationary geologic domain. 
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1. Introduction 

For categorical data, indicator approaches are widely utilized. For each rock type, different indicator 
variograms are being used. Secondary data may readily be coded as soft indicator or soft probabilistic data 
that can be suitable for modeling the non-stationary phenomena. Many people utilize indicator kriging (IK) 
(Cressie, 1989) and sequential indicator simulation (SIS) for modeling the geological domains. The SIS 
algorithm is a widely used tool for geostatistical modelling (Journel and Isaaks, 1984; Journel, 1983). This 
stochastic paradigm simulates the geological domains at the target block locations. The traditional SIS method, 
commonly used in industry, shows acceptable results when working in stationary structures. However, this 
method becomes problematic in the case of dealing with non-stationary geological domains. The reason is that 
traditional SIS is developed based on stationary assumptions. In heterogeneous characteristics of rock 
variabilities, the realization produced by traditional sequential indicator simulation may appear very patchy 
and unstructured. The simulated categories can be observed all over the deposit (pretending homogeneity), 
making this method extremely unreliable. To circumvent this problem, using soft data in SIS algorithm can be 
of great help as this information instruct the algorithm to produce the non-stationary geological domains. The 
soft data can be obtained from geophysical data and geological interpretation (Deutsch, 2006). The former is 
rarely available in mining industry. Use of the latter is quite subjective since it is very time consuming to 
produce a reliable model. Another issue concerning such deterministic models is how to convert them to local 
probabilities so that it can be used as soft data in the SIS algorithm. This step is not also quite straightforward. 
An algorithm is presented in the study that uses a machine-learning algorithm to produce such soft 
information. The method is very quick in identification of local probabilities and needs the minimum 
intervention of the practitioner. In the following, a theoretical background of the method proposed is 
discussed. The applicability of the method is also tested over a synthetic case study. 

2. Material and Methods 

2.1. Traditional sequential indicator simulation (SIS) 

The SIS algorithm uses IK to estimate the probability density function (pdf) of categorical variable Z for a 
categorical variable (u). It uses a combination of indicator formalism and the sequential paradigm to mimic a 
non-parametric distribution (Remy et al. 2008). A sequence of alternative, equally likely realizations of an 
indicator variable z(u) distribution are generated using stochastic simulation. For example, if z(u) from 
category k is simulated at spatial site u, the predicted pdf is as follows: 

 Prob{I(u) = 1|(n)} = E{I(u)|(n)} 

 
(1) 

Assume that 𝑖(𝑢; 	𝑧𝑘) is category 𝑧!. It turns to 1 if u belongs to 𝑧!, otherwise 0. Mutual exclusion must meet 
the following criteria:  

 
i"(u)i"# = 0,= 		∀k	 ≠ k#	and>i(u; z") = 1

$

"%&

 

 

 

(2) 

In reality, meeting those two requirements will be mutually exclusive and exhaustive. For example, when 
simple kriging is used to estimate the probability of variables 𝑧! on location u, i'(∗ (u; k), the following results 
are obtained: 

 
i'(∗ (u; k) = 	p" +>λ*[I(u; z") −	p"

+

*%&

] 
 

(3) 
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where p" is global proportion of category 𝑧! and λα is the weight of sample in kriging system. The SIS 
procedure is as following: (1) Create a route that passes through all of the simulated places. (2) For each u 
along the route: (a) Get the data for neighboring category conditioning: z(u*), α = 1,…, N. (b) Solve a kriging 
system to estimate the indicator random variable I(u; zk) for each of the K categories (Eq. 3). (c) After correcting 
order relation problems, estimate values of i∗(u;	z") = Prob∗(Z(u) = 	 z"), define an estimate of the discrete 
conditional probability density function (cpdf) of the categorical variable Z(u), and draw a realization, by 
using Monte Carlo simulation from cpdf and assign it as a datum at position u. After then, the preceding 
simulated values can be utilized as conditioning data for the subsequent unsampled site. (d) Repeat until all 
of the location have been visited. (3) To make new realizations, repeat the preceding stages with different 
random number in Monte Carlo simulation (Deutsch and Journel 1998). 

 

2.3. Multinomial Logistic Regression (MLR)  

Most multivariate analysis techniques require the basic assumptions of normality and continuous variables, 
involving independent and/or dependent variables as aforementioned. MLR exists to handle the case of 
dependents with more classes. This is referred to as the multivariate case. Thus, it is expected that the 
multinomial logistic regression approach would do better when there is evidence of substantial departures 
from multivariate normality, as is the case where there are some dichotomous or zero/one variables or where 
distributions are highly skewed or heavy-tailed, especially in dynamic settings. Tabachnick et al. (2007) argued 
that the multinomial logistic regression technique has several significant advantages as a summary to the 
discussion above: (1) it is more robust to violations of assumptions of multivariate normality and equal 
variance-covariance matrices across groups; and (2) it is similar to linear regression, but more easily 
interpretable diagnostic statistics. Widely use MLR as a problem-solving tool, particularly in medicine, 
psychology, mathematical finance, and engineering, due to the above advantages listed. This listed relevance 
attracted the present author’s attention to the study case described in this paper. Multinomial Logistic 
Regression algorithm allows predicting each point of categorical variable. The most important thing is that 
only MLR can calculate the probability of belonging those points to the first, second or third category and 
determines the probability of category to which most likely the categorical variable will belong. This data is 
vital for residual calculation, which will be implemented in our proposed approach.  

 

2.4. Non-stationary sequential indicator simulation   

Non-stationary sequential indicator simulation offers a reliable algorithm to model the categorical data with 
heterogeneous characteristics. This algorithm uses a non-stationary simple kriging with residuals from the 
locally varying mean probabilities (Deutsch, 2006):  

 
i,-∗ (u; k) = 	p"(u) +>λ*[I(u; z") −	p"(𝑢.)

+

*%&

] 
 

(4) 

In this formula, one is working with the residuals 𝐈(𝐮; 𝐳𝐤) −	𝐩𝐤(𝒖𝜶) over the sample points that are obtained 
from using a regression function. Therefore, a regression function should be fitted over the sample points to 
derive the residuals; then the same regression function should be used to predict the values at target location 
to derive 𝐩𝐤(𝐮). Variogram analysis should be implemented over the residuals at sample points. Since 𝒑𝒌(𝒖) 
and 𝒑𝒌(𝒖𝜶) in Eq. (4) are probabilities, one needs to use a regression functions flexible to produce those local 
probabilities in this algorithm. In this study, we propose to use MLR to infer such probabilities over the sample 
points and target grids. As far as the probability 𝒊𝑳𝑴∗ (𝒖; 𝒌) estimated at target location, the further processing 
steps are similar to traditional sequential indicator simulation. Hereafter, SIS-lm and SIS-trad refer to our 
proposed and traditional sequential indicator simulation approaches, respectively.  
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3. Results 

The proposed sequential indicator simulation using local probability means tested on a synthetic data set. This 
map obtained by using plurigaussian simulation (Madani, 2021) with an anisotropy with maximum continuity 
along North direction (Fig. 1). As can be seen, the produced map shows a very strict heterogeneous 
characteristic where the category 1 (blue) is located on the left, category 2 (green) is located on the center, and 
category three (red) is located on the right hand side of the grid. Then, 50 and 100 samples randomly selected 
from this map to supply the conditioning data in the simulation algorithms. As mentioned before, MLR is an 
appropriate method when data is not binary; in this case, the model has to predict values over three categories. 
Procedure performed several times by the different number of random values for assessing the quality of the 
Logit algorithm. To do so, 20% test and 80% train split those points’ values. The classification report shows 
that the estimated accuracy of the MLR model is 82%. Attempts to increase accuracy by tuning parameters 
and changing test/train ratio did not significantly affect the absolute accuracy for both cases. 

 

 

Figure 1 – Reference map; blue: category 1, green: category 2, and red: category 3. 

It should be mentioned that before implementing the SIS-lm, it is necessary to codify the data into the proper 
category (0 or 1) and calculate residuals for each category: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠	 = 	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	– 	𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟. Therefore, 
the experimental variogram has been calculated for each indicator (for SIS-trad) and their residuals (for SIS-
lm) along several directions (multidirectional) with a minimal tolerance to quantify the underlying anisotropy 
for each category separately. The intuitive results showed significant continuity along Northing as it was 
expected. Behind the experimental analysis of variogram, it is crucial to fit a justified theoretical variogram to 
the experimental ones. As a result, spherical theoretical variogram model was fitted manually. In order to 
provide unbiased results for this case study, 100 realizations were produced using the proposed algorithms 
with local means (SIS-lm) and traditional SIS (SIS-trad). The grid dimension of target block was considered 
300× 300×1 identical to the reference map. As it was expected, SIS-trad shows an unstructured and patchy 
results in both cases where using 50 points and 100 points (Fig. 2, Fig. 3). However, the results produced by 
SIS-lm showed that the realizations bear resemblance to the reference map. Here, to illustrate the results, 
realization #20 selected randomly for 50 points and 100 points (Fig. 2, Fig. 3). 
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Figure 2 – Comparison of realizations obtained by different techniques for 50 points; blue: category 1, green: category 2, 
and red: category 3. 

 

Figure 3 – Comparison of realizations obtained by different techniques for 100 points; blue: category 1, green: category 2, 
and red: category 3. 

Geological uncertainty is critical in orebody evaluation, as it can be proposed in the layout of the boundaries 
(Emery 2007). This uncertainty can be presented by probabilistic modelling of each categorical domain 
(conditional simulation). Probability maps are assessed at a local scale for each categorical domain to quantify 
the uncertainty. The maps are constructed by calculating, for each block, the frequency of occurrence of each 
rock unit over the 100 conditional realizations. They show the risk of finding a mineralized zone different from 
others. The sectors with little uncertainty are those associated with a high probability for a given rock unit, 
indicating that there is little risk of not finding this rock unit, or those associated with a very low probability, 
indicating that one is pretty sure of not finding this unit. In contrast, the other sectors (painted in light blue, 
green, or yellow are more uncertain. As can be seen from Figures 4 & 5, the proposed approach produced the 
more strong certainty of the presence of categories over the expected areas that conditioning dataset might be 
scarce.  
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Figure 4 – Comparison of probability maps of each categories obtained by different techniques for 50 points. 

 

Figure 5 – Comparison of probability maps of each categories obtained by different techniques for 100 points. 

In order to validate the realizations, it is necessary to calculate the frequency of each category along with the 
simulated results. This measure of global uncertainty provides an intuitive tool to compare with the properties 
of the experimental sampling data. It can also show how the proportion of each category is reproduced over 
each realization. As can be seen from Table 1, the average global proportions are presented for the categories 
evaluated by different approaches over 100 realizations. There is a slight difference between the global 
proportions of each category for the realizations obtained by proposed approaches (Table 1). Indeed, both 
methods produced the global proportions properly.  

Another method for uncertainty evaluation is to calculate the relative error (RE) between reproduced 
proportions and original proportions. Table (2) compares RE of SIS-trad and SIS-lm for 50 and 100 points. As 
can be seen, the relative error is much less when using SIS with local mean as proposed in this study. 
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Table 1 – Comparison of global proportions reproduced by SIS-trad and SIS-lm with an original proportion. 

 Category 1 Category 2 Category 3 

Original proportion (Reference map) 0.296 0.401 0.302 

SIS- lm (50 points) 0.318 0.411 0.270 

SIS-trad (50 points) 0.297 0.422 0.279 

SIS- lm (100 points) 0.324 0.373 0.301 

SIS-trad (100 points) 0.303 0.342 0.354 
 

Table 2 – Comparison of relative errors evaluated by SIS-trad and SIS-lm with original proportion. 

 Category 1 Category 2 Category 3 Sum of errors 

SIS- lm (50 points) 0.074 0.025 -0.106 -0.006 

SIS-trad (50 points) 0.006 0.052 -0.076 -0.016 

SIS- lm (100 points) 0.096 -0.06 -0.004 0.024 

SIS-trad (100 points) 0.024 -0.147 0.171 0.048 

4. Discussion and Conclusions  

The use of sequential indicator simulation with local mean probabilities and residuals calculated from utilizing 
Multinomial Logistic Regression is a viable approach for building realizations of non-stationary geological 
domains. The resulting algorithm correctly represents each geological domain compared with traditional SIS. 
Moreover, realizations and probability maps produced by the proposed algorithm result in an increased 
accuracy and reduced the error when comparing with original map and, therefore, they have the potential to 
provide improved support for engineering decisions. 
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Abstract 

The large availability of complex spatial data (curves, images, distributions) has posed a new and 
revolutionary challenge to spatial statistics. Object Oriented Spatial Statistics (O2S2) is a system of ideas which 
takes on the challenge, founding on a geometrical viewpoint to the data analysis. The foundational idea behind 
O2S2 is that the data object is considered as an indivisible unit (a.k.a. the atom of the analysis) rather than a 
collection of features, and it is analyzed via a mathematical embedding into an appropriate space (e.g., a 
Hilbert space or a Riemannian manifold, depending on the characteristics of the data). 

We here focus on the problem of spatial prediction for functional data, when their embedding space can be 
assumed to be a Hilbert space, and their spatial domain of observation is a river network. Here, the peculiar 
reticular nature of the domain requires to use geostatistical methods based on the concept of stream distance, 
which captures the spatial connectivity of the points in the river induced by the network branching.  

Extending to Hilbert data the pioneering ideas of Ver Hoef and Petersen (2010), we develop a class of 
functional moving average models based on the stream distance, allowing one to account for both the 
geometry of the data (as determined by their embedding space) and that of the spatial domain (as from the 
binary tree representing the stream network). Within this broad class of models, we shall focus on the so-called 
purely tail-up and purely tail-down models, and give a consistent definition of their covariance structure. The 
associated estimators, allowing one to assess the spatial structure of the data, will also be illustrated. This will 
eventually enable us to discuss on kriging prediction methods over stream networks, for both stationary and 
non-stationary object data. 

We will illustrate our proposal on water temperature profiles in the Middle Fork River, USA.
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Abstract 

With the increase of computational power in the digital electronic machines, more and more mathematical 
computations, in particular machine learning (ML) algorithms, rapidly are replacing the traditional routine 
time-consuming jobs. This context has also impacted the process of geological modeling either. In ore body 
evaluation, the classical framework is first orebody modeling by, for instance, wireframing the geological 
domains and then carrying out the resource estimation. Currently, most of the industrial practitioners are 
using explicit modeling for the first step -geological modeling, which is very time consuming and requires 
trained specialists. Even though they find ones, the result of the model is substantially subjective to the opinion 
of the geologist.  

In contrary to the explicit geological modeling, implicit modeling uses mathematical algorithms and 
computational power to construct automatically the 2D/3D geological domains using drillhole data. In recent 
years, several interpolation algorithms have been proposed to improve the implicit modeling techniques. For 
implicit modeling, there is not much man-machine interaction needed, and due to high automation and quick 
partial update, it is being more and more popular in the field of geological modeling of an orebody.  

There are plenty of implicit modeling techniques coming from mathematical science. For instance, in 
traditional geostatistics, indicator kriging (IK) is frequently used as a trivial implicit approach for geological 
domain modeling. However, IK suffers from some problems such as order relation problem, negative weights 
in the kriging system, and support effect, which makes the algorithm computationally intensive and 
sometimes untrustworthy for large number of blocks and complex geological domains. 

In this paper, we discuss an alternative and powerful tool, widely used in ML, the Gaussian processes 
algorithm, which can solve the problem of IK in implicit modeling of geological domains. We treated the 
domain modeling as the classification problem in classical ML. The main hyperparameter to tune here is the 
kernel used for the interpolation. This arises from the fact that, by changing only the kernel function, one can 
obtain different results. In this paper, we compared the results of nearest neighbor method and indicator 
kriging with GP, where different kernels are used. In both cases, squared exponential kernel, a type of radial 
basis functions (RBF), was applied. The comparison of the algorithms was performed on synthetic dataset and 
the results showed that the performance of the traditional approach and GP is alike. We can also impose the 
anisotropy in the kernel function derived from the variogram analysis. 

The procedure of modeling with GP has more advantages compared to traditional IK approach, although 
having almost the same result as an output. Among the advantages is that computation of GP is much faster 
than of IK and the process itself also requires less human interaction. The problem of order relation deviations 
and negative weights are not actually obstacles in the GP algorithm. 

Keywords: Machine learning; Indicator kriging, Domain modeling; Gaussian processes; Implicit modeling. 
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1. Introduction 

The main goal of the geological modeling is to identify the geological features, i.e. lithology, mineralization, 
geochemistry etc., to understand and visualize the picture of the sub-soil in a better way. Geologists draw 
cross-sections upon their knowledge and expertise and construct 3D models. Sometimes, the geological 
models are quite complex, and in the process of constructing such models, geologists try to decrease the level 
of complexity by reducing the number of geo-domains or connecting the geo-domains with the straight lines. 
To solve this issue, geoscientists try to adapt the mathematical algorithms to automate the process, and here 
comes the implicit geological modeling. 

Implicit geological modeling is two-fold, scientific community is searching new approaches to alleviate the 
process of constructing the geological model using very quick process with a click of a button, whereas 
geologists tend to use their expertise where they can construct the model they think it is more compatible with 
the geological setting. Nevertheless, this work is dedicated to one of the numerical methods from machine 
learning, which in turn can be applied to solve the problem of geological domain modeling. 

Implicit modeling uses mathematical algorithms and computational power to automatically construct 3D 
volumes using drillhole data. A lot of interpolation algorithms were tested and being tested to improve 
implicit modeling. For implicit modeling, there is not much man-machine interaction needed, and due to high 
automation and quick partial update, it is being more and more popular in the field of three-dimensional 
modeling of orebodies. Among others, the interpolation methods applicable for such implicit geological 
modeling can be: triangulation with linear interpolation (Dyn, Levin, and Rippa 1990), nearest neighbor 
(Olivier and Hanqiang 2012), inverse distance weights (Lu and Wong 2008), linear interpolation (Powell 1994), 
local polynomial (Baker and Pixley 1975), radial basis functions (RBF) interpolation (Morse et al. 2001), spline 
interpolation (R. and de Boor 1980), indicator Kriging, discrete smooth interpolation (Frank, Tertois, and 
Mallet 2007), moving least squares (MLS) (Fleishman, Cohen-Or, and Silva 2005), support vector machine 
(SVM) (Smirnoff, Boisvert, and Paradis 2006; 2008), potential field method with Gaussian Processes 
(Gonçalves, Kumaira, and Guadagnin 2017). The most used method nowadays in some commercial geological 
modeling software programs (Micromine, Leapfrog, Datamine, Gocad) is RBF-based interpolator (Wang et al. 
2018; Zhong et al. 2019).  

Among these algorithms, the nearest neighbors and indicator Kriging are one of the simplest, classical, and 
therefore the most used in the industry. In this paper, we will focus on the machine learning algorithm called 
Gaussian Processes which we will compare to the results of classical approaches. 

2. Methodology 

2.1. Indicator Kriging 

Indicator Kriging is a classical geostatistical approach for modeling spatial data. There are different 
applications of indicator Kriging in the modeling, it can be applied to categorical variables as well as to 
continuous variables. In this paper, we will focus on the categorical variables modeling with two categories. 
The routine of indicator Kriging begins with processing of the dataset. We have to assign the indicators to each 
category as shown in the Table 1. 

After we assign the indicators, we compute indicator semi-variograms for each category and define variogram 
models. From the variogram model we calculate the weights λOK and apply ordinary Kriging for each category. 
After that for each block we choose the maximum probability category.  

Kriging is the best linear unbiased estimator (BLUE), which means it is exact interpolation method, but it is 
computationally intensive, because for each location, we have to compute large system of equations. 
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Table 1 – Data processing before indicator Kriging. 

u 
Sample location 

Z(u) 
Category (lithology) 

i(u, zclay) 
Indicators (Clay) 

i(u, zsand) 
Indicators (Sand) 

u1 Clay 1 0 
u2 Sand 0 1 
u3 Sand 0 1 
…    

 
2.2. Machine learning approach 

Machine learning algorithms are becoming more and more popular in all fields. There are several approaches 
in machine learning, based on the problem set one is aiming to solve, such as supervised learning and 
unsupervised learning, clustering, classification, regression.  

For the case of geological domaining, the most appropriate approach is supervised learning binary 
classification algorithms. The advantage of the machine learning algorithms is that it can take several input 
parameters. The input parameters for the proposed model (Gaussian process), we chose (x, y) coordinates. For 
binary classification problem we don’t apply the indicator approach, we just convert the classes into numerical 
values.  

Table 2 – Data processing before binary classification algorithm. 

u 
Sample location 

Z(u) 
Category (lithology) 

i(u, zclay) 
Indicators (Clay) 

u1 Clay 1 
u2 Sand 2 
u3 Sand 2 
…   

 

Another significant difference between Machine learning algorithm and traditional geostatistics like Kriging 
is the application of weights. In machine learning, the weight are applied to input values, whereas in Kriging, 
the weights are applied to the known output values as shown in the Figure 1. 

 

2.3. Gaussian Processes 

Gaussian Processes algorithm belongs to the machine learning family. It is a generalization of the Gaussian 
probability distribution. Gaussian probability distribution functions summarize the distribution of random 
variables, whereas Gaussian processes summarize the properties of the functions, e.g. the parameters of the 
functions. As such, one may think of Gaussian processes as one level of abstraction or indirection above 
Gaussian functions. (Rasmussen and Williams 2018) 

Similar to Kriging, one of the crucial parameters for Gaussian Processes is the covariance function, for which 
it is used as a kernel function for prediction. Covariance function gives the algorithm, the assumption of the 
prediction model, and depending on the chosen kernel function, one can obtain different models using the 
same input data. 

For domain modeling as a kernel, we decided to use a radial basis function – squared exponential kernel. 

𝑘`𝑥4 , 𝑥5b = exp	(−
𝑑`𝑥4 , 𝑥5b

6

2𝑙6 ) 

where:  l – length scale of the kernel; d(x,y) – Euclidean distance to conditioning data. 
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So, basically our model is controlled by the length scale of the kernel and a kernel multiplier, to sharpen the 
change between two classes. 

 

 

 

 

 

 

 

a) 

 

 

 

  

b) 

 

 

 

 

c) 

Figure 1 – Machine learning approach vs kriging approach: a) model construction to obtain weights wi; b) estimation 
with ML algorithm; c) estimation with kriging algorithm. 

 

Figure 2 – The effect of kernel multiplier (https://scikit-learn.org/). 
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2.4. Computer program 

A computer program for indicator Kriging, Gaussian Processes was written in Python. For Kriging part, we 
used gstools and pykrige libraries from geostat-framework (https://geostat-framework.org/). For Gaussian 
Processes part, we used scikit-learn package (https://scikit-learn.org/). 

3. Results 

In this work, we compared the Gaussian Processes algorithm with classical geostatistical approach on the 
synthetic dataset. We have two reference maps of a size of 300x300m, generated from plurisim software, one 
isotropic and the other anisotropic. 

3.1. Isotropic model 

We generated a simple reference map of two categories with isotropic distribution (Figure 2a). Then we 
regularly sampled our map with 50x50m grid mesh and computed indicator variogram (Figure 2b). 

 
a) b) 

Figure 3 – Reference map with regular sampling. 

The model for variogram we obtained was Spherical (Sill=0.267, Range=121, Nugget=0).  

The kernel parameter: length scale = 50, kernel multiplier = 200 

The decision about the length scale of the kernel depends on several factors. Changing the length scale will 
give us different models. So, in this work, to obtain a model similar to indicator Kriging, our recommendation 
is to take around ½ of the Range obtained from the variogram or around the distance between samples. 

 

Figure 4 – Comparing the obtained results for IK and GP. 
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3.2. Anisotropic model 

To test the performance of the Gaussian process algorithm on anisotropic dataset, we generated an anisotropic 
map with an anisotropy with maximum continuity along 45 degrees. As in previous case, firstly we run the 
traditional approach with indicator kriging. In this case we took finer mesh for sampling, 25x25m and tried to 
run the algorithm. For running the indicator kriging, two cases are considered with isotropic and anisotropic 
variograms. In Figure 5, we observe our reference map (left) and comparing with the obtained models by 
indicator Kriging with isotropic variogram model (middle) and anisotropic variogram model (right).  

The indicator variogram parameters were the following: 

Isotropic variogram: Spherical (Sill=0.26, Range=70, Nugget=0); 

Anisotropic variogram: Spherical (Sill=0.26, Range=[90,45], Nugget=0, Angle=45deg). 

 

 

Figure 5 – Comparing the results from isotropic IK and anisotropic IK with the reference map. 

From Figure 5 we observe, that anisotropic model looks better that isotropic model, because it does not regard 
the directional variogram. 

Now let’s compare the results obtained from Gaussian Processes algorithm. As hyperparameters, we again 
apply only the isotropic kernel length scale and kernel multiplier. The length scale = 25, the kernel multiplier 
= 200. 

 

Figure 6 – Comparing the results from Gaussian Processes and anisotropic IK with the reference map. 
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In Figure 6, the results obtained with isotropic kernel for GP shows that in some regions, it found the direction 
of distribution and is obviously showed better performance than isotropic IK, but a bit lower performance 
than anisotropic IK.  

 

3.3. The computational performance of the algorithms. 

In this work we used small model with size 300x300m with block size 1x1m, so we had 90000 blocks. The 
computer program was written in Python. The time for computing anisotropic model for each algorithm is 
shown in the table below. 

Algorithm Time, ms 
Indicator Kriging 1420 

Gaussian Processes 360 

4. Discussion and Conclusions 

The aim of the paper is not to show that the performance of the Gaussian Processes algorithm is much better 
than of Indicator Kriging. One of the main ideas is to demonstrate an alternative method for implicit numerical 
geological domain modeling. This paper showed only the application in 2D case, but it can be easily converted 
to 3D volume construction. Saying about the advantages of the proposed method is that its performance is 
much faster than of kriging, in our case it showed 3 times faster computation, this might be even larger for big 
models. One of the main reasons is demonstrated in Figure 1, the working principle of ML approaches. 
Another advantage is that there are not much hyperparameters to tune, and the performance is very similar 
to what the IK gives.  

But of course, there is some work to do, we need to be able to specify the directional anisotropy, if we clearly 
observe it from a directional variogram. In this work, we showed the performance of the squared exponential 
kernel, for further research other kernels might be tested, and depending on the variogram analysis Gaussian 
processes algorithm can also be applied for estimation of continuous variables. 
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Abstract 

A recently proposed Conditional Random Field method of producing geostatistical models of one or more 
target variables with many covariables of mixed discrete/continuous type works in two steps. Firstly, it finds 
approximate conditional distributions at the model target locations using a relatively low dimensional 
machine learning regression leveraging embedding spatial estimators, such as kriging. The idea of embedding 
simpler models gives the method its name, Ember. Its advantage is that no explicit random function is required 
to produce the approximate conditional distribution. In a second stage, when stochastic simulations are 
required, the residual variation is sampled from the previously estimated set of conditional distributions using 
a uniformly distributed random field.  By construction the marginal distribution of the target variable, 
bivariate marginals and even higher order marginals of the target with any of covariates are reproduced in 
the simulated model. In the applications considered so far this has been simulated via a Gaussian Random 
field (i.e a Gaussian copula is used). However, sometimes this simulation approach can be too restrictive and 
a way of relaxing this is required. 

Many applications of Geostatistics require an ensemble of stochastically generated models. One example, 
amongst many, would be to understand the uncertainty in the flow of fluids in an aquifer. Geoscientists will 
often want to do more than just sample realizations from a fixed parameter stochastic model. It may be 
necessary to vary parameters such as the global mean or to create scenarios based on geological hypothesis 
which are consistent with, but not determined by the data. For example, a geologist might draw one or more 
possible maps of facies fairway based on domain knowledge. This type of scenario variable may only have a 
weak linear correlation with the target data but have a textural relevance difficult to capture with limited data. 
Scenario modelling is about ensuring that these possibilities are considered. With most current forms of 
geological modelling, it can be difficult to produce scenarios and yet continue to honour the relevant 
marginals.  

This presentation, after a quick introduction to the Ember method, looks at ways that it can be extended to 
produce scenarios. One straightforward method is to modify the envelope of approximate conditional 
distributions to incorporate the specific scenario. This approach changes the marginal distributions although 
the differences are often small enough to remain acceptable. A second method is to modify the sampling 
strategy. It is necessary to ensure that the sampling random variable remains uniform if the marginals are to 
be conserved. One method which achieves that is considered here by modelling the sampling RF as a 
Substitution RF with the scenario variable as directing function, allowing the texture of the scenario to be 
caught.  
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Abstract 

Missing data are a frequent problem in meteorological and hydrological observation datasets. They are caused 
by many circumstances, e.g., sensor malfunction, errors in measurements, faults in data acquisition from the 
operators, etc. Finding efficient methods to deal with this problem is an important issue because it is necessary 
to have complete time series to carry out reliable hydrological analyses. There are numerous gap-filling 
procedures, usually specific to the nature of the variable under study. In this research, two approaches – FAO-
based linear regression and Kriging interpolation – were compared in terms of their ability to fill missing data. 
In addition, some general criteria proposed by the World Meteorological Organization (WMO) were 
considered. The FAO procedure fills the gaps using data collected at the gap time in other stations. Aiming at 
filling the missing data of a certain monitoring station, the approach proceeds as follows: first, the correlation 
coefficients with the other existing stations, having an appropriate common recording period, are computed; 
then, the station with the highest correlation is considered to estimate the parameters of a regression equation, 
which is used to obtain the missing value of the interested station. Instead of considering time series at a 
specific location, the Kriging approach analyses the spatial distribution of hydrometeorological data at a 
certain time. As a result, to fill each gap at a monitoring station, the approach requires recognition of the 
stations with available data, computation of the variogram and interpolation of the missing data at a specific 
location through the Kriging approach. For testing purposes, complete-time series were selected from several 
rain gauges in a large area of Northern Italy. To evaluate the efficacy of the approaches, few data were removed 
from one station. Then, the two methods were used to estimate the precipitation in the missing periods. The 
FAO method is suggested in case of a small number of gaps and requires little computational effort. Whereas 
Kriging can manage more intensive processes but it involves the use of a large number of monitoring stations. 
The pros and cons of the two gap-filling approaches were discussed by measuring the goodness of integration 
with shared metrics.  
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Abstract 

The simulation of conditional spatial random fields with correlation to an external variable is omnipresent in 
environmental sciences. In hydrology, for example, soil water content exhibits a relationship with precipitation 
while precipitation itself is often correlated to the topography. Considering these relationships can help to 
improve the estimation of the variable of interest at unsampled locations. Traditionally, external drift Kriging 
is used to incorporate a linear relationship to an external variable. This method however is mainly used for 
estimation often leads to values outside the admissible range of the variables.  

We propose a new approach to simulate conditional random fields with correlation to an external variable 
using FFTMA and p-field simulation. Using p-field simulation combined with FFTMA, one can simulate 
conditional realizations of the variable of interest. The p-field represents the conditional cumulative 
distribution functions (ccdf) at each sampled and unsampled location. These ccdfs can for example be 
determined using Kriging or copula interpolation. FFTMA can then be used to simulate an unconditional 
spatial random field with a given spatial covariance which is estimated from the variable of interest. This field 
is subsequently transformed into a conditional field via the p-field’s ccdfs. In order to introduce the correlation 
to an external variable, one can use inverse FFTMA. Assuming that the external variable represents a random 
field, one can determine the underlying Gaussian random numbers by inverting the FFTMA equations. These 
Gaussian random numbers can then be used to generate correlated Gaussian random numbers for the 
simulation of the unconditional field using FFTMA, where the correlation is obtained from the relationship 
between the variable of interest and the external variable. Thus, one obtains an unconditional spatial random 
field which exhibits the desired correlation. Using the p-field, this unconditional field can then be transformed 
into a conditional field with correlation to the external variable. 

We demonstrate this new approach using rainfall data from Baden-Wuerttemberg. Rainfall in BW exhibits 
significant correlation with the state’s topography. A digital elevation model will be used to determine this 
correlation and will serve as external variable for the simulations. 
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Abstract 

Spatially misaligned data are becoming increasingly common due to advances in both data collection and 
management in a wide range of scientific disciplines including the epidemiological, ecological and 
environmental fields. Here, we present a Bayesian geostatistical model for fusion of data obtained at point and 
areal resolutions. The model assumes that underlying all observations there is a spatially continuous variable 
that can be modeled using a Gaussian random field process. The model is fitted using the integrated nested 
Laplace approximation (INLA) and the stochastic partial differential equation (SPDE) approaches. In the SPDE 
approach, a continuously indexed Gaussian random field is represented as a discretely indexed Gaussian 
Markov random field (GMRF) by means of a finite basis function defined on a triangulation of the region of 
study. In order to allow the combination of point and areal data, a new projection matrix for mapping the 
GMRF from the observation locations to the triangulation nodes is proposed which takes into account the 
types of data to be combined. The performance of the model is examined via simulation when it is fitted to (i) 
point, (ii) areal, and (iii) point and areal data combined to predict several simulated surfaces that can appear 
in real settings. The model is also applied to predict the concentration of fine particulate matter (PM2.5) in Los 
Angeles and Ventura counties, USA. The results show that the combination of point and areal data provides 
better predictions than if the method is applied to just one type of data, and this is consistent over both 
simulated and real data. We conclude the approach presented may be a helpful advance in the area of spatial 
statistics by providing a useful tool that is applicable in a wide range of situations where information at 
different spatial resolutions needs to be combined.  



GEOSTATISTICAL THEORY AND NEW METHODOLOGIES geoENV2022 

 
 

44 

 

BIVARIATE DEEPKRIGING FOR LARGE-SCALE SPATIAL INTERPOLATION OF WIND 
FIELD  

Pratik Nag (1)* - Ying Sun (1) - Brian Reich (2) 

Environmental Statistics Department, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia (1) 
- Department of Statistics, North Carolina State University, Raleigh, United States (2) 
* Corresponding author: pratik.nag@kaust.edu.sa 

Abstract 

High spatial resolution wind data are essential for a wide range of applications in climate, oceanographic and 
meteorological studies. Large-scale spatial interpolation or downscaling of bivariate wind fields is a 
challenging task because wind data tend to be non-Gaussian with high spatial variability and heterogeneity. 
In spatial statistics, cokriging is commonly used for predicting bivariate spatial fields. However, the cokriging 
predictor is not optimal except for Gaussian processes. Additionally, cokriging is computationally prohibitive 
for large datasets. In this paper, we propose a method, called bivariate DeepKriging, which is a spatially 
dependent deep neural network (DNN) with an embedding layer constructed by spatial Radial basis functions 
for bivariate spatial data prediction. We then develop a distribution-free uncertainty quantification method 
based on bootstrap and ensemble DNN. Our proposed approach outperforms the traditional cokriging 
predictor with commonly used covariance functions, such as the linear model of co-regionalization and 
flexible bivariate Mat\'ern covariance. We show that the proposed DNN model is computationally efficient 
and scalable, with twenty times faster computations on average. We apply the bivariate DeepKriging method 
to the wind data over the Middle East region at 506771 locations. The prediction performance of the proposed 
method is superior over the cokriging predictors and dramatically reduces the time of computation and the 
large-scale computational complexity.  
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Abstract 

The modeling of mineral resources is one of the important stages in a mining project. Based on regionalized 
variables corresponding to the type of deposit, the initial data can be evaluated and modeled to produce some 
informative maps that can be obtained based on either geostatistical estimation or simulation techniques. 
Regarding this, compositional variable, e.g., grade of ore, the mineralogical composition of rocks, etc. often is 
used in geostatistical modeling. The main issue for this type of data is closure problem, which lead to spurious 
linear cross-correlation between the pair of such variables, impacting the mineral resource evaluation of the 
deposit. Therefore, the correlation of compositional data cannot represent a true linear relationship between 
the components, and the generally accepted interpretation of the deduced correlation may be interpreted 
incorrectly. In this case, using standard multivariate geostatistical methods for modeling compositional data 
without pre-processing step can lead to inconsistencies in the final results. This crucial step can be 
implemented using advanced data analysis techniques based on, for instance, log-ratio transformations. This 
methodology allows freeing compositional data from subordination to a constant sum, which in turn makes 
it possible to use standard geostatistical methods in real space for modeling of such complex variables. After 
this step, a post-processing step is needed to restitute the simulation results to the original scale of the data. 
The purpose of this research is to compare two methods of logarithmic ratio transformation to evaluate the 
mineral resources in order to find out the most reliable transformation technique. To do so, the closure problem 
of compositional nature of the data is solved by additive logarithmic ratio (alr) and centered logarithmic ratio 
(clr) transformations of the borehole data. The algorithm is illustrated over the Carajas Iron ore deposit in 
Brazil, where five geochemical components (Fe, Al2O3, Mn, P and SiO2) are required to be considered for 
mineral resource evaluation in this deposit. A filler variable is also introduced. This variable is a collection of 
undefined components that have not been analyzed through each sample. After pre-processing step, the 
transformed variables are subjected into the variogram analysis to infer the linear model of coregionalization. 
Then, using the direct and cross-variogram models, the transformed variables are co-simulated over the target 
grid cells entire the deposit. The realizations are then post-processed to back-transfer the simulation results to 
the original scale of the five geochemical elements. Furthermore, a mineral resource evaluation is taken into 
account to quantify the recovery functions (tonnage, mean grade, and metal quantities) for the whole deposit 
to compare the results obtained from both log-ratio transformations. A cross-validation technique is also 
performed. At the end, a proper discussion is provided so that one can evaluate the consistency of these two 
log-ratio transformation techniques for a proper mineral resource evaluation.  

 
Keywords: Compositional data; Geostatistical analysis; Log-ratio transformation; Carajas Iron mine. 
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1. Introduction 

Compositional data is one of the most common data types in geostatistical modeling (Pawlowsky-Glahn & 
Egozcue, 2016). Compositional data usually includes the grades of ore, mineralogical composition of rocks, 
concentrations of chemical elements in soils and rocks (Pawlowsky, 1984). By definition, compositional data 
(CoDa) is two or more variables, which together characterize the relative weight of each variable in relation to 
the whole (Pawlowsky-Glahn et al. 2015). In other words, CoDa consists of certain parts, each of which 
represents a fraction of the whole (Pawlowsky-Glahn & Olea, 2004). Since the compositional data is only 
positive numbers, and their sum is always 100%, changing one value within the sum entails changing others 
to maintain a constant amount. For instance, when determining the proportion of chemical elements, a specific 
element corresponds to its percentage of content, but when the proportion of an element changes (for example, 
from 15% to 20%), the sum of the remaining concentrations cannot be automatically more than 80%. In 
addition, correlations in this case might be spurious due to the limitation of a constant sum. Thus, the "constant 
sum" problem, which is also called as the "closure effect", can limit the application of standard statistical 
methods in relation to such data and eventually, leads to erroneous statistical results (Grunsky & Caritat, 
2019). Thereby, for a relatively accurate evaluation of mineral resources and ore reserves, it is necessary to take 
into account the compositional nature of the data and implement advanced data analysis techniques based, 
for instance, on logarithmic ratio transformations basis. In this paper, different methods of log-ratio 
transformations are compared. In the following, a theoretical background is given mostly about such 
transformations and their geostatistical modeling, and then an Iron deposit case study is used to compare 
different approaches.  

2. Material and Methods 

2.1. Compositional data analysis (CoAn) 

The concept of compositional data analysis (СoAn) historically refers to Aitchison method (Aitchison, 1986). 
This technique is based on log-ratio transformations, in which data is transformed using appropriate 
transformations that preserve the geometry of compositional data on the simplex and the support space of 
compositional data. In other words, this method includes pre-processing of data before their analysis and 
modeling, allowing to free compositional data from subordination to the closure effect that represents a 
positive constant 𝛥 on the scale of the underlying random vector (Aitchison, 1986). According to Aitchison 
(1986) a vector of δ components Z(x) = {Z1(x); Z2(x); …; Zδ(x)} is a composition of: 

                                                                          Ɐ𝑍4(𝑥) > 0								 ∑ 𝑍4(𝑥) =7
4%& 𝛥 (1) 

In this case, the closure problem of compositional nature of the data is solved by additive log-ratio (alr) and 
centered log-ratio (clr) transformations of the borehole data. These types of transformations, corresponding to 
compositional data, are briefly described below. 

2.1.1. Additive log-ratio transformation (alr)  

The additive log-ratio transformation converts original data into log-ratios as (Aitchison, 1986): 

                                                                    𝐹(𝑥) = (𝑙𝑛 8!(:)
8"(:)

; 𝑙𝑛 8#(:)
8"(:)

; … ; 𝑙𝑛 8"$!(:)
8"(:)

) (2) 

where the numerator is the original composites Z(x), and one of the variables is chosen as the denominator. 
The distinctive features of the denominator are that, firstly, it must be strictly positive, and secondly, the same 
denominator must be applied to all variables. For this study, a filler variable is introduced, which is a collection 
of undefined components that have not been analyzed through each sample. In addition, for alr, the filler was 
chosen as the denominator 𝑍7(𝑥), since it facilitates the analysis by reducing the number of transformations 
by one compared to the initial number of variables, and the choice of this denominator does not affect the 
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results of forward and back-transformations (Job, 2010). After obtaining the transformed variables, 
geostatistical algorithms can be applied over the log-ratio transformed regionalized variables (F(x)). But the 
result of modelling should be backward transformed into the compositional space (Pawlowsky-Glahn & 
Egozcue, 2016). For the back-transformation, the equation has the following form (Aitchison, 1986): 

                                                  𝐵(𝑥) = ( <=>	(@!)
∑%&!
"$!<=>	(@%)B&

; <=>	(@#)
∑%&!
"$!<=>	(@%)B&

; … ; <=>	(@"$!)
∑%&!
"$!<=>	(@%)B&

) × 𝛥  (3) 

2.1.2. Centered log-ratio transformation (clr) 

The centered log-ratio transformation is able to transfer the compositions to the real sample space for further 
application of statistical analysis methods (Aitchison, 1986): 

                          𝐹(𝑥) = (𝑙𝑛 8!(:)

C8!(:)×8#(:)×…×8"(:)
" ; 𝑙𝑛 8#(:)

C8!(:)×8#(:)×…×8"(:)
" ; … ; 𝑙𝑛 8"$!(:)

C8!(:)×8#(:)×…×8"(:)
" ) (4) 

where the numerator are the composites, and the denominator is the geometric mean of those composites over 
the sample points. The main advantage of clr transformation over alr is that clr can display composition 
isometrically. The back-transformation clr is represented as (Aitchison, 1986): 

                                                        𝐵(𝑥) = ( <=>	(@!)
∑%&!
"$!<=>	(@%)

; <=>	(@#)
∑%&!
"$!<=>	(@%)

; … ; <=>	(@"$!)
∑%&!
"$!<=>	(@%)

) × 𝛥   (5) 

After pre-processing step, the transformed variables are subjected into the normal score transformation and 
then into the variogram analysis to infer the model of coregionalization. Then, using direct and cross-
variogram models, the transformed variables are simulated and co-simulated over the target grid cells entire 
the region using any Gaussian simulation approaches such as turning bands (co)-simulation that we used in 
this study.  

2.2. Turning Bands (Co)-Simulation  

The turning bands simulation (TBSIM) is designed to generate a realization from a normal distribution with 
zero mean and a specified covariance structure (Matheron, 1973). The concept of the TBSIM is to convert of a 
two- or three-dimensional problem to a series of one-dimensional problems, which implies the creation of a 
series of one-dimensional random processes along lines radiating from a coordinate origin and their 
subsequent projection and combination at arbitrary points in space, yielding discrete values or realizations of 
the field (Journel & Huijbregts, 1978). 

Having the covariance model fitted to the primary de-clustered normal score variable, the covariance function 
is derived from one-dimensional random fields. TBSIM provides a non-conditional multi-dimensional 
random field compatible with the target covariance model, in which the simulated values are practically 
standard Gaussian (Emery & Lantuéjoul, 2006).  

TBCOSIM is an extension of TBSIM, indicating an approximate algorithm based on the multi-Gaussian 
distribution assumption of the underlying random field as first introduced by Matheron (1973). The existence 
of cross-correlation among certain variables motivates one to use Gaussian co-simulation approaches rather 
than independent simulation (Wackernagel, 2003). The reason relates to considering the inter-dependency 
characteristic among certain variables, for which it leads to generate results that reproduce the local and global 
multivariate statistical parameters of data. In TBCOSIM, it is of interest to simulate stochastically the cross-
correlated variables. In this regard, the cross-covariance function is needed to construct such one- and multi-
dimensional Gaussian random fields in the region.  

2.3. Case study 

The proposed algorithm is based both on TBSIM and TBCOSIM using both simple and ordinary kriging/co-
kriging methods, illustrated over the Carajas Iron ore deposit in Brazil, where five geochemical components 
(Fe, Al2O3, Mn, P and SiO2) are considered for mineral resource evaluation in this deposit. The main stages 
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of the algorithm is briefly described below. The closure problem of the data is solved by additive log-ratio (alr) 
and centered log-ratio (clr) transformations of the borehole data after introducing a filler variable. The 
transformed variables are subjected into the variogram analysis to infer the linear model of coregionalization 
after normal score transformation of alr- and clr-transformed data. Using the direct and cross-variogram 
models, the transformed variables are simulated and co-simulated over the target grid cells entire the deposit 
(for this, simple and ordinary kriging/co-kriging are used). The realizations are post-processed to back-transfer 
the simulation results to the original scale of these five geochemical elements. A mineral resource evaluation 
is then considered to quantify the recovery functions (tonnage, mean grade, and metal quantities). To save the 
space, the output of Fe and Al2O3 are only presented to compare the simulation results obtained from both 
log-ratio transformations. A cross-validation technique is also performed. 

3. Results 

In order to validate the simulation results, Mueller et al. (2014) illustrated that it is necessary that the 
simulation results either reproduce the global statistical parameters in original scale or in log-ratio 
transformed values. For this purpose, the results of simulation and co-simulation using simple kriging/co-
kriging for alr-transformed data were reflected in this paper because the statistical parameters calculated for 
the simulation and co-simulation using simple/ordinary kriging/co-kriging for clr-transformed data and for 
the simulation and co-simulation using ordinary kriging/co-kriging for alr-transformed data produced not 
very satisfying results, particularly in reproduction of original global distributions. The correlation coefficient 
matrix is provided in Table 1 for the simulation results in simplex space and original space. As can be seen, in 
both cases, the TBCOSIM is superior in reproduction of correlation coefficients in both original scale and log-
ratio scales. This difference can be explained by the fact that compared to TBCOSIM, TBSIM does not consider 
the cross-dependency between variables, which leads to poor reproduction of the cross-correlation between 
the modeled variables.  

Table 1 – Correlation coefficients on original scale and log-ratio scale of original data, TBSIM and TBCOSIM obtained 
from (alr) transformation. 

 

Next step is to quantify the reproduction of original distribution. For this, QQ-plots are drawn in Figure 1.  
According to the QQ-plots, co-simulation with simple co-kriging gives better results for both Fe and Al2O3 
compared to simulation method with simple kriging, and this significantly is better for Al2O3 (Fig. 1). The clr-
transformed simulation results are all failed to reproduce the original distributions.  
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          (a)    (b)      (c)          (d) 

Figure 1 – QQ-plots of Al2O3 for (a) TBSIM and (b) TBCOSIM and of Fe for (c) TBSIM and (d) TBCOSIM obtained from 
(alr) transformation. Green line: individual realizations; black: average of distributions. 

In order to identify the dependence relationship regardless of measure of correlation coefficient for 
comparison of two algorithms, the scatter plots between pairs of Al2O3 and Fe for simulation and co-
simulation are depicted (Fig. 2). As can be seen, co-simulation with simple co-kriging over alr-transformed 
data gives better results compared to simulation method. In TBCOSIM, the reproduction of bivariate relation 
between the variables, compared to TBSIM, demonstrates that, not only the reproduction of bivariate relations 
is improved, but also the bivariate relation is roughly in agreement with the original data. 

 

 
     (a)       (b) 

Figure 2 – Scatter plots of Al2O3 and of Fe for (a) TBSIM and (b) TBCOSIM for realization No.1 obtained from (alr) 
transformation. Blue points: simulation results; red points: original data. 

E-type maps, obtained by averaging the original scaled simulated results across 100 realizations of TBSIM and 
TBCOSIM per block, are represented in Figure 3. As can be seen, independent simulation for Al2O3 generated 
very noisy and unstructured results. However, for Fe, this revealed specific outlines that are mainly 
concentrated in the lower part of the region and then decrease to the north-east. Compared to simulation, co-
simulation showed more reliable results from a visual inspection. It can be noted that for Al2O3, its spatial 
variability mainly lies in the direction from the southwest to the northeast. In addition, in the case of Fe, co-
simulation has a similar pattern of high values distribution, since the highest values also lie in the southern 
part of the region, and the lowest values in the east. This good illustration of high and low values in TBCOSIM 
is related to the influence of co-variates in the process of modeling.  

To assess the uncertainty, the variance maps were also obtained for 100 realizations both for independent 
simulation and co-simulation (Fig. 4). A distinctive feature of simulation and co-simulation at this stage is that 
in the case of simulation, the produced conditional variance map is very noisy. However, co-simulation for 
Al2O3 shows high uncertainty where high ore values are located, which may be due to the  proportional effect 
of Al2O3 variability in this deposit (Fig. 3). For Fe, both methods reproduce a similar result and low 
uncertainty corresponds to places with a high iron content. 
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     (a)           (b)              (c)      (d) 

Figure 3 – E-type maps of Al2O3 for (a) TBSIM and (b) TBCOSIM and of Fe for (c) TBSIM and (d) TBCOSIM obtained 
from (alr) transformation. 

 
  (a)         (b)               (c)       (d) 

Figure 4 – Conditional variance maps of Al2O3 for (a) TBSIM and (b) TBCOSIM and of Fe for (c) TBSIM and (d) 
TBCOSIM obtained from (alr) transformation. 

As a result of the analysis of grade-tonnage curves, it was found that the co-simulation for Al2O3 produces a 
much higher value of the metal content compared to the simulation. However, for the fraction of tonnage, the 
results of both methods are approximately the same. In the case of Fe, both TBSIM and TBCOSIM reproduced 
very similar results (Fig. 5). This highly affects the mine planning process, since Al2O3 is a deleterious element 
in this deposit and proper evaluation of this component lead to better evaluation of a mine plan and Net 
Present Value of a project. 

 

 

Figure 5 – Grade-Tonnage Curves for TBSIM (black) and TBCOSIM (red) obtained from (alr) transformation. 
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4. Discussion and Conclusions 

In an iron deposit, the clr- and alr-transformation techniques are used to model five geochemical components 
in this deposit using independent simulation and co-simulation techniques. After analysis of reproduction of 
original distribution, it was revealed that all clr-transformation techniques are failed to reproduce the original 
distribution of variables. In addition, using ordinary kriging and co-kriging in the simulation paradigms for 
alr-transformed data also produced biased results for reproduction of original distributions. Therefore, we 
decided to show only the more or less acceptable results of simulation and co-simulation over the alr-
transformed data when using simple kriging and co-kriging. The results showed that co-simulation 
outperforms the simulation in terms of reproduction of original bivariate relations, original distribution and 
conditional variance. The final resource estimation also showed better results for co-simulation. 
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Abstract 

Geological modeling is required for the correct characterization of natural phenomena and can be done in two 
steps: (1) clustering the data into consistent groups and (2) modeling the extent of the domains in space 
honoring the labels defined in the previous step. The clustering step can be based on the information of 
continuous variables in space, instead of relying on the geological logging of the data. Methodologies able to 
deal with this problem are applied in the definition of stationary spatial domains, where the assumption of a 
constant mean within a given spatial domain is critical for resource estimation.  

In this work, we propose a method to cluster the data that can then be used for domaining when multiple 
geochemical variables are available. The method assumes that changes in the local correlation between these 
attributes can be used to characterize the domains. The method looks at the local (linear) correlations between 
variables at sample locations, inferred in a local neighborhood. These local correlations defined at sample 
locations can be mapped into the space of correlation matrices which form a Riemannian manifold, where the 
Euclidean distance is no longer a suitable metric. The correlation matrices are then clustered by adapting a k-
means algorithm to the manifold context. The main challenge is to find a suitable metric able to cluster data 
on the correlation matrix space, with the purpose of solving the computation of distances between correlation 
matrices and determine the centroid associated to each cluster. This is addressed by using tools from 
Riemannian Geometry. An application of the procedure is shown in a real case study to illustrate and capture 
the essential steps of the methodology. This example demonstrates how the clustering methodology proposed 
honors the spatial configuration of data delivering continuous clusters and agrees with previous domaining 
attributes.  
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Abstract 

Remote Sensing tools and approaches are now widely used in many different fields such as mining 
engineering, soil sciences, environmental monitoring, etc. Satellite data is useful within many geosciences 
because it provides a large amount of time-space continuous data which is easily and quickly accessible. 
Clouds and shadows within satellite images, however, are an important challenge as they obscure surface 
features. In many cases, the image cannot be used or the target area cannot be studied because of cloud cover. 
To counteract this, Geostatistical tools can be used to estimate the missing data in the target area.  

In this study, a Sentinel-2 image from Copernicus data of land cover in Emilia Romagna (Italy) is used and the 
spectrum bands are resampled into 10-m resolution. The objective of the study is to estimate the RGB-values 
of a cloud-covered area within the image. The statistical parameters and the spatial variability of nearby pixels 
are studied by testing different neighborhoods to analyze the possibility of interpolation within the cloud-
covered area. Then the estimator properties are controlled and the values of the cloud-covered pixels are 
estimated by assuming different parameters such as the size and shape of the neighborhood in consideration, 
number of pixels used for the estimation and the pixels distribution in the image. The reliability of results is 
then evaluated by analyzing the estimation variance of each estimated pixel and mapping them. The analysis 
has been carried out using mainly MATLAB and VBA programming. 

To validate the results, an image taken at a similar a timeframe has been used for comparison. Results show 
the advantages and disadvantages of different ways to estimate the cloud-covered area and reliability of the 
estimations are compared. In addition, by comparing the results with the original values, the effect of the cloud 
cover has been evaluated on different remote sensed band values.  
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Abstract 

Water authorities, legislators and groundwater users have commonly used groundwater numerical models as 
tools for aquifer management, as they provide crucial information to make decisions. However, these models 
are complex and computationally expensive. Moreover, numerical models require specialized personnel who 
can operate them and interpret the results. An approach to overcoming these disadvantages is to replace the 
numerical model with a data-driven surrogate. Surrogate models are built with machine learning methods, 
and they are trained from a number of scenarios considering possible ranges of variations in the inputs or 
outputs of the numerical model, such as, the extracted or injected flow, recharge or evapotranspiration. 

This study has assessed different machine learning methods for the construction of groundwater flow 
surrogate models for the Requena-Utiel and Cabrillas-Malacara aquifers, in Valencia, Spain. The goal is to 
provide a fast and precise tool that allows evaluating the impact of possible changes in external variables 
(pumping, precipitation) on the decrease or increase in piezometric heads. To facilitate the use of the model 
and allow anyone to make a query, it is freely accessible from the internet. 

The surrogate models have resulted in very precise approximations for the input and output ranges for which 
the training data was generated. Likewise, the computational reductions are remarkable. We conclude that the 
surrogate models are fast, easy-to-use and powerful tools to assist in aquifer management. 

This research was developed under the scope of the InTheMED project. InTheMED is part of the PRIMA 
Program supported by the European Union's Horizon 2020 Research and Innovation Program under Grant 
Agreement No 1923. 
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Abstract 

Water scarcity is a major global problem and expected to become even more significant in the near future. 
Overexploitation of groundwater, from direct and indirect activities, mainly due to intensive agricultural 
activity, combined with projected climatic change, has a great impact on the hydrological/hydrogeological 
conditions of the Mediterranean region. This generates concerns over the sustainability of groundwater 
resources.  

In this work, a geostatistical analysis approach, in combination with a machine-learning algorithm, i.e. Self-
Organizing Maps (SOM), was applied with three main goals. a) to develop reliable spatial maps of 
groundwater level variability in a large-scale hydrogeological system of complex aquifers, and to identify 
groundwater level zones, b) to process efficiently a large dataset of 2524 wells using geostatistical analysis and 
c) to accurately map groundwater level spatial distribution in a local scale. As a first step, the algorithm applied 
Self-Organizing Maps to identify locally similar input data, and then used those identified clusters of data, by 
means of Ordinary Kriging to estimate the spatial distribution of groundwater level and produce maps in 
large and local scales.  

The proposed method provides a complementary tool to physically based models that require extensive data 
and hydrogeological details to produce reliable large-scale groundwater level fields. Such maps can be helpful 
to organize management scenarios for the sustainability of groundwater resources in large hydrogeological 
districts and to assess the climate change effect of hydrometeorological variables on the groundwater 
resources. 

This research was developed under the scope of the InTheMED project. InTheMED is part of the PRIMA 
Program supported by the European Union's Horizon 2020 Research and Innovation Program under Grant 
Agreement No 1923. 

  



GEOSTATISTICAL THEORY AND NEW METHODOLOGIES geoENV2022 

 
 

56 

 

A COMPARISON BETWEEN BAYESIAN AND ORDINARY KRIGING BASED ON 
VALIDATION CRITERIA: APPLICATION TO RADIOLOGICAL CHARACTERISATION  

Martin Wieskotten (1,3)* - Marielle Crozet (1) - Bertrand Iooss (2,5) - Céline Lacaux (3) - Amandine Marrel 
(4,5) 

CEA, DES, ISEC, DMRC, Univ. Montpellier, Marcoule, Lma Université D’Avignon, Avignon, France (1) EDF 
R&D, Chatou, France (2) - LMA Université D'Avignon, Avignon, France (3) - CEA, DES, IRESNE, DER, 
Cadarache, Saint-Paul-Lez-Durance (4) - Institut de Mathématiques de Toulouse, Toulouse, France (5) 
* Corresponding author: martin.wieskotten@gmail.com 

Abstract 

Radiological characterisation is one of the main challenges of the decommissioning and dismantling projects 
of nuclear facilities. This is an important step in decommissioning projects as it aims to estimate the quantity 
and spatial distribution of different radionuclides. To carry out the estimation, measurements are performed 
on site to obtain preliminary information and spatial interpolation, for example using the kriging tool, which 
allows to predict the value of interest for the contamination (radionuclide concentration, radioactivity, etc.) at 
unobserved positions. A strong assumption made when applying ordinary kriging is that the variance and 
range parameters are known, which is rarely the case. Furthermore, the estimation error made when these 
parameters are estimated from the data is never taken into account, although this can lead to biased kriging 
predictions and overoptimistic prediction variances. This problem is emphasised when only a few 
observations are available (a quite common case in decommissioning projects), since the variance of the 
parameters' estimators becomes larger. To address this issue, we propose to use Bayesian kriging where the 
model parameters are considered as random variables, which allows to take into account their uncertainties. 
The use of prior specifications in Bayesian kriging also allows for more robust parameter estimate when only 
a few observations are available. As such, the present work focused on assessing the usefulness of Bayesian 
kriging whilst comparing its performance to that of ordinary kriging. First, in order to make a relevant 
comparison, a simulated data set with known parameters is initially studied and several cross-validation 
criteria, such as the predictivity coefficient (𝑄²), the Predictive Variance Adequacy (𝑃𝑉𝐴), and the 𝛼-CI plot, 
are estimated for varying data sizes to quantify the performances of both kriging methods. A new criterion, 
the Predictive Interval Adequacy (𝑃𝐼𝐴), is also introduced and studied. Then, the same comparison is applied 
on a real data set from the decommissioning project of the G3 reactor at the CEA’s Marcoule site. 

Keywords: Geostatistics; Bayesian kriging; Ordinary kriging; Validation criterion. 

1. Introduction 

Radiological characterization is one of the main challenges encountered in the nuclear industry for the 
decommissioning and dismantling (D&D) of old infrastructures. Its main goal is to evaluate the quantity and 
spatial distribution of radionuclides. As such, measurements are made to constitute a data set and obtain 
preliminary information. While measurements are made, many problems can arise. The radioactivity present 
on site can be dangerous for operators and does not allow for many measurements. In some extreme cases, 
drones and robots have to be used CEA DEN (2017), making measurements more expensive and reducing 
data set's sizes. It is therefore quite common in nuclear D&D characterisation to have only a small number of 
data available. A balance has to be found between information and costs, and statistical tools make it possible 
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to optimise the information extracted, within a rigorous mathematical framework giving associate confidence 
intervals. 

More precisely, spatial statistics or geostatistics are used to predict the variable of interest at unobserved 
position (prediction of the expected value), with an indication of the expected error in prediction (the 
prediction variance). The methodology is often based on two steps: first the construction of a statistical model 
with the estimation of its parameters, followed by prediction with the linear interpolator based on kriging. 
The classical kriging model also receives a common critic: its predictions do not take into account the 
uncertainty in the estimation of the model parameters. The variances of the predictions are too optimistic and 
the neglected model uncertainties can have a significant impact. This problem is made worse for smaller data 
sets, which can be common in D&D projects. The work of Desnoyers (2010) is one of the first example of 
application of kriging to radiological characterisation. In his work a practical case study was analysed, but was 
based on many measurements, which is not realistic in the case of industrial nuclear D&D projects.  

To overcome this, a Bayesian approach was first proposed by Kitanidis (1986). Its main goal was to take into 
account uncertainties in the scale and mean parameters of the model. The work of Handcock and Stein (1993) 
then completed the full Bayesian approach which considers all the parameters of the model as unknown. More 
recently, a slightly different approach was presented by Krivoruchko and Gribov (2019) and is called empirical 
Bayesian kriging. While the equations are similar to the ones of regular Bayesian kriging, the prior choices are 
obtained through unconstrained simulations of the random field. This approach was adapted to allow for 
multi-fidelity applications, where Bayesian theory is used to update the initial data with new, more accurate 
data (classically used with cokriging if correlations between old and new data exist). Some examples can be 
found in meteorology with Gupta et al. (2017) or for oil extraction in Al-Mudhafar (2019). Note that a more 
complete description of Bayesian kriging with an extension to generalised linear model is presented in Diggle 
and Ribeiro (2007).  

The following Section describes the different kriging models and the model validation criteria that are used. 
Section 3 provides our models’ comparison results on several numerical tests and on our real application case 
study. Section 4 gives some conclusions. 

 

2. Material and Methods 

2.1. Spatial Model and Predictions 

The model considered is the following random field: 

{𝑍(𝑥), 𝑥 ∈ ℝ6}, 

which is constrained to 𝐷 ⊂ ℝ6. The random field 𝑍(. ) is isotropic and stationary, meaning: 

∀	𝑥 ∈ 	𝐷, 𝐸[𝑍(𝑥)] = 𝛽, 

∀	𝑥, 𝑦	 ∈ 	𝐷, 𝐶𝑜𝑣`𝑍(𝑥), 𝑍(𝑦)b = 𝜎6𝐶F(|𝑥 − 𝑦|), 

where 𝛽, 𝜎² and 𝜙  are the mean variance and range parameters, respectively. The term 𝐶F corresponds to a 
semidefinite positive function. Moreover, the random field is considered Gaussian. Thus for 𝑛 observations at 
positions {𝑥&, . . . , 𝑥G}, we obtain the Gaussian random vector 𝒁 = (𝑍(𝑥&), . . . , 𝑍(𝑥G))′. We then have: 

𝒁|𝛽, 𝜎², 𝜙~𝒩(𝛽𝟏G, 𝜎²𝑲F), 

with 𝟏G = (1, . . .1)′, and  𝜎²	𝑲F = (𝐶𝑜𝑣(𝑍(𝑥4), 𝑍(𝑥5)))&H4,5HG the covariance matrix. The observation sample of 𝒁 
is written 𝒛 = (𝑧(𝑥&), . . . , 𝑧(𝑥G))′. 
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The model is therefore specified by 3 different parameters: the trend parameter 𝛽 ∈ 	𝐷J, the scale (or variance) 
parameter 𝜎² ∈ 	𝐷K² and the range parameter 𝜙 ∈ 	𝐷F. The first step of the geostatistical methodology is to 
estimate these parameters. Two main procedures exist: variographic analysis and maximum likelihood 
estimation. An extensive literature is available about parameter estimation with variographic analysis, such 
as Chilès and Delfiner (2012), Webster and Oliver (2007). In this work, we use maximum likelihood estimation 
to avoid automatic fitting of variograms since our numerical tests will require the estimation of parameters 
for numerous data sets generated by simulations. Automatic fitting of variograms is strongly discouraged in 
most of the literature (Chilès and Delfiner, 2012; Webster and Oliver, 2007), so we avoid this method here. 

The kriging predictor is a linear interpolator which expressions are derived from supplementary conditions, 
such as minimizing the prediction variance. For a detailed description of kriging and its construction, the 
reader can refer to the reference books of Chilès and Delfiner (2012), Cressie (1993) for geostatistics, but also 
Rasmussen and Williams (2006) for computer code surrogate models. Let 𝑥M be an unobserved position at 
which we wish to predict the expected value and the variance of 𝑍(𝑥M)|𝜎², 𝜙, 𝒁 = 𝒛 (the mean is considered 
unknown), the ordinary kriging equations are: 

𝐸[𝑍(𝑥M)|𝜎6, 𝜙, 𝒁] = �𝒌 + 𝟏G
1 − 𝟏𝒏# 𝑲F

O&𝒌
𝟏𝒏# 𝑲F

O&𝟏G
�
#

𝑲F
O&𝒁,	

𝑉𝑎𝑟[𝑍(𝑥M)|𝜎², 𝜙, 𝒁] = 𝜎²�𝟏 − 𝒌′𝑲F
O&𝒌 +

`1 − 𝟏𝒏# 𝑲F
O&𝒌b6

𝟏𝒏# 𝑲F
O&𝟏G

�, 

with	𝜎²𝒌 = (𝐶𝑜𝑣(𝑍(𝑥M), 𝑍(𝑥5)))&H5HG. A major concern for applications of these equations is that they are 
conditional on the knowledge of the variance and correlation length parameters, which is mostly unrealistic 
since they are estimated. This assumption yields overoptimistic prediction variances and narrower confidence 
intervals. This problem is made worse in case of a small data set where parameter estimation is sensible to 
each observation. To address this issue, more robust methods exist such as cross-validation estimation (Bachoc  
(2013a)). Another solution is to consider the parameters as random variables. Bayesian approach seems natural 
in this case and leads to Bayesian kriging.	

Indeed, Bayesian kriging deals simultaneously with estimation and predictions by considering the parameters 
as random variables that must be predicted conditionally to the observed data. We use here the approach 
described by Diggle and Ribeiro (2002). For ease of notation, densities will be denoted as 𝑝(. ) and the 
conditioning to parameters will be simplified from 𝑍|𝛽 = 𝛽�	𝑡𝑜	𝑍|𝛽. Bayesian kriging predictions are derived 
from the predictive distribution as follows: 

𝑝(𝑍(𝑥M)|𝒁 = 𝑧) = � 𝑝(𝑍(𝑥M), 𝛽, 𝜎², 𝜙|𝒁 = 𝒛)𝑑𝛽𝑑𝜎²𝑑𝜙
	

P'×P(²×P*

	 = � 𝑝(𝑍(𝑥M), 𝛽, 𝜎²|𝜙, 𝒁 = 𝒛)𝑝(𝜙|𝒁 = 𝒛)𝑑𝛽𝑑𝜎²𝑑𝜙
	

P'×P(²×P*	

	 = � 𝑝(𝑍(𝑥M)|𝜙, 𝒁 = 𝒛)𝑝(𝜙|𝒁 = 𝒛)𝑑𝜙
	

P*	
.

 

As per usual in Bayesian framework, we choose a joint prior distribution for 𝛽, 𝜎²: 

𝜋(𝛽, 𝜎²) ∝
1
𝜎²
. 

For the correlation length, the prior is reduced to a uniform law between the minimum and the maximum 
distance allowed by the data set: 

𝜙	~	𝑈(𝐷F,Q4G, 𝐷F,QR:). 
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2.2 Validation criteria 

Different validation criteria have been recently deeply studied by Demay et al. (2022), to compare and choose 
different covariance models for geostatistical predictions. These criteria aim to assess the quality of both the 
predictions of the model and the associated prediction variances. Their expressions are given here in their 
leave-one-out cross-validation form, but can be extended to K-fold cross-validation or to validation sets cases. 
These criteria with some new adaptations are given below. 

Predictivity coefficient (𝑄²) 

The main goal of this coefficient is to evaluate the predictive accuracy of the model by normalising the errors, 
allowing a direct interpretation in terms of explained variance. Its definition is the following: 

𝑄² = 1 −
∑ (𝑧(𝑥4) − 𝑧̂O4)6G
4%&
∑ (𝑧(𝑥4) − 𝜇̂)6G
4%&

, 

where 𝑧̂O4 is the value predicted at location 𝑥4 by the model built without the 𝑖-th observation and 𝜇̂ is the 
empirical mean of the data set. This coefficient measures the quality of the predictions and how near they are 
to the observed values. It is similar to the coefficient of determination used for regression (with independent 
observations), but estimated here by cross-validation. The closer its value is to 1, the better the predictions are 
(relatively to the observations). As a rule of thumb, if the 𝑄² is smaller than 0.5 (i.e. less than 50% of output 
variance explained), the model is not considered valid. 

Predictive variance adequacy (𝑃𝑉𝐴) 

This second criterion aims to quantify the quality of the prediction variances given by the model and kriging. 
Finely studied in Bachoc (2013b), it is defined by the following equation: 

𝑃𝑉𝐴 = �𝑙𝑜𝑔 �
1
𝑛>

(𝑧(𝑥4) − 𝑧̂O4)6

𝑠̂O46

G

4%&

��, 

where 𝑠̂O46  is the prediction variance (at location 𝑥4) of the model built without the 𝑖-th observation. It estimates 
the average ratio between the squared observed prediction error and the prediction variance. It therefore gives 
an indication of how much a prediction variance is bigger or smaller than the one expected. The closer the 𝑃𝑉𝐴 
is to 0, the better the prediction variances are. For example, a 𝑃𝑉𝐴 ≈ 0.7 indicates prediction variances that are 
on average two times bigger or smaller than the squared errors. 

Predictive interval adequacy (𝑃𝐼𝐴) 

The 𝑃𝑉𝐴 is a criterion of variance adequacy but does not take into account a possible skewness in the predictive 
distribution. In the Gaussian case (like ordinary kriging), mean and variance completely characterise the 
distribution. But in the case of Bayesian kriging where the predictive distribution is no longer Gaussian, the 
𝑄² and 𝑃𝑉𝐴 are not sufficient to evaluate the quality of the model and its prediction. As such, we propose a 
new complementary geometrical criterion called the predictive interval adequacy (𝑃𝐼𝐴) and defined as 
follows: 

𝑃𝐼𝐴 = �𝑙𝑜𝑔 �
1
𝑛>

(𝑧(𝑥4) − 𝑧̂O4)6

`𝑞�M.T&,O4 − 𝑞�M.UV,O4b²

G

4%&

��, 

where 𝑞�M.T&,O4 (respectively 𝑞�M.UV,O4) is the estimation of the quantile of order 0.31 (respectively 0.69) of the 
predictive distribution (at location 𝑥4) without the 𝑖-th observation. Note that it has been defined to be identical 
to the 𝑃𝑉𝐴 for a Gaussian distribution, but rather than comparing squared errors to the predictive variance, it 
compares the width of prediction intervals with the squared errors. Another main difference is that the 
intervals considered by the 𝑃𝐼𝐴 are centered on the median while those of the 𝑃𝑉𝐴 are centered around the 
mean. Finally, an estimation of the predictive distribution is necessary to compute in practice this criterion, 
whereas the 𝑃𝑉𝐴 only requires the computation of predictive mean and variance. 
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𝛼-CI plot and Mean Squared Error 𝛼 (𝑀𝑆𝐸𝛼) 

The Gaussian process model allows to build prediction intervals of any level 𝛼 ∈]0,1[: 

𝐶𝐼.`𝑧(𝑥4)b = �𝑧̂O4 − 𝑠̂O4𝑞&O.6
𝒩(M,&); 𝑧̂O4 + 𝑠̂O4𝑞&O.6

𝒩(M,&) , 

where 𝑞
&O+#

𝒩(M,&) is the quantile of order 1 − .
6
 of the standard normal distribution. This expression is only valid 

if all parameters are known. For example, if the scale parameter is incorrectly estimated, the width of the 
predicted confidence intervals will not reflect what we might observe. But how can we validate a confidence 
interval without prior knowledge of the model parameters? The idea behind this criterion is to evaluate 
empirically the number of observations falling into the predicted confidence intervals and to compare this 
empirical estimation to the theoretical ones expected: 

Δ. =
&
G
∑ 𝛿4G
4%&  where 𝛿4 = £1		if		𝑧(𝑥4) ∈ 𝐶𝐼.(𝑧(𝑥4)0		else . 

This value can be computed for varying 𝛼,	and can then be visualised against the theoretical values, yielding 
what Demay et al. (2022) call the 𝛼-CI plot. 

Similarly to the 𝑃𝐼𝐴, the 𝛼-CI plot must be adapted to the Bayesian kriging since the posterior distribution is 
not Gaussian. We therefore introduce a slightly different criterion based on the quantiles of the predictive 
distribution. More precisely, the 𝛼-CI plot relies now on credible intervals defined as: 

𝐶𝐼§.(𝑧(𝑥4)) = �𝑞�&O.
6 ,O4

	; 𝑞�&B.
6 ,O4 , 

where 𝑞�!$+
# ,O4 	 (respectively 𝑞�!,+

# ,O4 	) is the estimation of the quantile of order &O.
6

 (respectively &B.
6

) of the 

predictive distribution (at location 𝑥4) of the model built without the 𝑖-th observation. 

Once again, we obtain a criterion that is identical for both methods when the predictive distribution is 
Gaussian. 

Illustrations of 𝛼-CI plot can be found in Demay et al. (2022). To summarise the 𝛼-CI plot, we also introduce a 
quantitative criterion called the Mean Squared Error 𝛼 defined as follows: 

𝑀𝑆𝐸𝛼 =>(Δ.- − 𝛼5)²
G+

5%&

, 

where 𝑛. is the number of widths considered for prediction intervals and 𝛼5 the width of the 𝑗-th confidence 
interval 𝐶𝐼§.- (in practice a regular discretization of 𝛼 on ]0,1[ will be considered to compute 𝑀𝑆𝐸𝛼). The closer 

this criterion is to 0, the better the confidence/credible intervals are in average.   

The different aforementioned criteria provide complementary information to evaluate the prediction quality 
of the kriging model, either in terms of mean, variance or confidence/credible intervals. They will be used in 
the following to compare the performance of ordinary and Bayesian kriging. 

3. Numerical tests and results 

3.1. Analytical example 

Our goal is to compare Bayesian and ordinary kriging (the latter being the more commonly used kriging 
method). To do so, we will compute the different criteria mentioned above on data sets of different sizes. 

First, we consider data sets simulated from an analytical Gaussian process model with known parameters. 
More precisely, the data sets are simulated in the input space [0,10]² from a Gaussian process with an 
exponential covariance and the following parameters: 

𝛽	 = 	0.5, 𝜎² = 0.1, 𝜙 = 4.5.	 



GEOSTATISTICAL THEORY AND NEW METHODOLOGIES geoENV2022 

 
 

61 

 

We simulate data sets of different sizes, varying from 16 and 81 observations, sampled in a square grid on the 
input space. For each size, the process is repeated 100 times with independent random Gaussian process 
simulations. 

For each data set, Bayesian and ordinary kriging models are estimated and the different validation criteria are 
computed by cross-validation. Results are given in Figure 1 with boxplots w.r.t. the data set sizes.  

The results indicate that Bayesian kriging performs better in terms of both mean and prediction variance for 
small sample sizes. More precisely, Bayesian kriging outperforms ordinary kriging on all the four criteria for 
data sets with less than 40 observations. This result is especially visible for the 𝑃𝑉𝐴 and 𝑃𝐼𝐴 and shows that 
the main difference between both kriging methods still lies in the predictive variance estimation. This is mainly 
because the Bayesian kriging accounts for more uncertainty of the estimates of Gaussian process parameters 
than ordinary kriging. Bayesian kriging therefore yields larger and more accurate prediction intervals, and as 
a result better 𝑃𝑉𝐴, 𝑃𝐼𝐴, and 𝑀𝑆𝐸𝛼 criteria. 

 

 

Figure 1 – Distribution of validation criteria (Q², 𝑃𝑉𝐴, 𝑃𝐼𝐴, and 𝑀𝑆𝐸𝛼) w.r.t. the size of data sets, for simulated data. 

It can also be noted that for larger data sets, Bayesian and ordinary kriging yield similar results. This 
observation was to be expected, since Bayesian and inferential methodology coincide for larger data sets. It 
can be therefore argued that Bayesian kriging becomes less advantageous and relevant for data set with more 
than 40 observations, since its computational cost is higher than that of ordinary kriging. Note that 𝑄² values 
are also extremely low for 49 observations or fewer, but again this is to be expected for very small data sets. 

 

3.2. Real application case: G3's data set 

We apply a similar protocol to the real data set of the G3 reactor in CEA Marcoule. This data set is made of 70 
observations of radioactivity measurements sampled in the input domain [0,10] × [0,7]. To generate multiple 
data sets, we resampled without replacement data sets of various sizes 20, 30, 40, 50, 60 and 70 observations, 
with the last one being the real size of the original data set. Once again, the process is repeated 100 times for 
each sample size (except for 70 observations) and for each sample a cross-validation is applied to estimate the 
validation criteria. 

The obtained results are given in Figure 2. They are similar to the ones obtained for the simulated data sets. 
We can remark that the variance of each validation criterion is reduced as the data sets size grows. This is both 
explained by the larger data sets, but also by our protocol, where observations are randomly drawn without 
replacement among the original 70 observations, so that as the data set sizes increases, the samples differ less 
and less. It can be noted that ordinary kriging seems to be slightly better than Bayesian kriging for larger data 
sets, reinforcing our precedent argument that Bayesian kriging should be reserved for smaller data sets for 
which the uncertainty in parameter estimation is high. 
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Figure 2 – Distribution of validation criteria (Q², 𝑃𝑉𝐴, 𝑃𝐼𝐴, and 𝑀𝑆𝐸𝛼) w.r.t. the size of data sets, for the G3 data set. 

4. Discussion and Conclusions 

In conclusion, the use of Bayesian kriging for spatial interpolation of data sets in support of decommissioning 
and dismantling projects shows promising results. It is particularly true for small data sets for which it 
outperforms the ordinary kriging in terms of accuracy of predictive mean, variance and predictive intervals. 
This advantage becomes less important as the sample size increases: ordinary kriging, less computationally 
expensive, is then preferable for large data sets. Bayesian kriging has also the drawback of requiring a prior 
specification, which is often difficult to choose and can strongly influence the predictions. Therefore, the use 
of Bayesian kriging should be restricted to smaller data sets or cases in which prior information on parameters 
is well known. Our future work will focus on better modelling of measurement uncertainty in Bayesian 
kriging, particularly through the use of heteroscedastic models (Ng and Yin (2012)). 
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Abstract 

The incentive of this presentation is the age-old quest of stochastic hydrogeology: Are we able to better match 
observed long-tailed breakthrough curves by an improved description of the spatial dependence of saturated 
hydraulic conductivity (K)? 

This contribution considers two innovations: We include more information than usual by incorporating 
multiple types of observations at non-collocated locations (data fusion), and we extract more information than 
usual from the available measurements by analysing statistical properties that go further than typical second-
order moments-based analyses (non-Gaussian geostatistics). 

The evaluation of these innovations in geostatistical simulation methodologies of spatially distributed fields 
of K is performed against real-world tracer-tests that were performed at the site of the K measurements. The 
hypothesis is that fields that contain the most information match the observed solute spreading best. 

Various hypotheses regarding the representation of the vertical non-stationarity are evaluated. The most 
complex model involves spatially distributed K- fields were geostatistically simulated using the multi-
objective phase annealing (PA) method. To accelerate the asymmetry updating during the PA iterations, a 
Fourier transform based algorithm is integrated into the three-dimensional PA method. Multiple types of 
objective functions are included to match the value and/or the order of observations as well as the degree of 
the “non-Gausianness” (asymmetry). Additionally, “censored measurements” (e.g., high-K measurements 
above the sensitivity of the device that measures K) are considered. 

The MAcroDispersion Experiment (MADE) site is considered the holy grail of stochastic hydrogeology as 
among the well instrumented sites in the world, the variance of the hydraulic conductivity measurements at 
the MADE site is fairly large and detailed observations of solute spreading are available. In addition to the 
classic K-measurements obtained via 2611 flowmeter measurements, recently a large set of 31123 
K-measurements obtained via direct push injection logging (DPIL), are available, although not at the same 
locations where the flowmeter measurements were taken. 

The improved dependence structure of K with all of the above knowledge contains more information than 
fields simulated by traditional geostatistical algorithms and expected as a more realistic realization of K at the 
MADE site and at many other sites where such data-fusion approaches are necessary.
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Abstract 

At the beginning of the COVID-19 pandemic, the uncertainty about the dynamics of the phenomenon was so 
high that one of the most important alert tools for managing the pandemic was the real-time characterization 
of the cumulative incidence rates (i.e., the infection risks) in wide geographic domains. Thus, geostatistical 
models have been used to characterize a daily risk map of COVID-19 incidence and the associated uncertainty, 
like the COVID-19 Risk Map for Portugal (Azevedo et al., 2019) which was adopted by the Portuguese 
Directorate-General for Health as a tool for controlling the incidence and managing the mitigation measures. 

After the different stages of confinement, risk control and management concerns moved to a more local scale. 
Hence, one of the major challenges of public health management to face in a new pandemic outbreak of 
COVID-19 is to detect local anomalous daily values, in order to take local pandemic containment measures 
promptly. In this context, an anomalous incidence value of COVID-19 is the one that exceeds the predicted or 
expected value at one spatial location, above a certain threshold. An anomalous value differs from 
neighbourhood values, as it is a spatial discontinuity and has different temporal behaviour. 

In this study, we propose a method for predicting local distributions of incidence values and detect the 
anomalous values based on the local predicted probability distribution functions, by accounting for the 
spatiotemporal evolution of COVID-19 cumulative incidence rates of a given region, namely a set of 
municipalities in the metropolitan region of Lisbon used to validate the model. 

For this purpose, the space and time components of the prediction model are treated separately. In the first 
step, we consider historical data of each municipality to forecast incidence values of COVID-19 by training a 
Machine Learning algorithm (Genetic Programming). The predicted and observed incidence values allow to 
build the corresponding predicted probability distribution function (PDF) of cumulative incidence rates for 
each municipality centroid location and for the required day. 

In a second step, the spatial component is added by characterising the local predicted PDFs, using 
geostatistical sequential simulation. With the simulated realizations, we obtain a space-time predicted model 
of local PDFs for the “next day”. Comparing the real observed incidence values of the “next day”, at a specific 
location, we can classify this value as anomalous if it exceeds one extreme percentile of the predicted PDF at 
that location and also has a different behaviour from the neighbourhood value.  
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Abstract 

It is essential to understand what future epidemic trends will be, as well as the effectiveness and potential 
impact of public health intervention measures. The goal of this research is to provide insight that would 
support public health officials towards informed, data-driven decision making. We present spatialEpisim, an 
R Shiny app that integrates mathematical modelling and open-source tools for tracking the spatial spread of 
infectious diseases in low- and middle-income countries (LMIC). Our app uses open-source GIS tools and 
freely available population count data downloaded as a gridded raster map at the 30-arc second resolution 
from WorldPop (www.worldpop.org) to assess the geographical spread of an epidemic. With this app we can 
visualize how an infectious disease spreads across a large geographical area. The rate of spread of the disease 
is influenced by changing the model parameters and human mobility patterns. We present spatial 
compartmental models of epidemiology (ex: SEIR, SEIRD, SVEIRD) to capture the transmission dynamics of 
the spread of COVID-19. The rate of spread of the disease is influenced by changing the model parameters 
and human mobility patterns. First, we run the spatial simulations under the worst-case scenario, in which 
there are no major public health interventions. Next, we account for mitigation efforts including strict mask 
wearing and social distancing mandates, targeted lockdowns, and widespread vaccine rollout to vaccinate 
priority groups. As a test case Nigeria is selected and the projected number of newly infected and death cases 
are estimated and presented. Projections for disease prevalence with and without mitigation efforts are 
presented via time-series graphs for the epidemic compartments. Predicting the transmission dynamics of 
COVID-19 is challenging and comes with a lot of uncertainty. In this research we seek primarily to clarify 
epidemiological and mathematical ideas, rather than to offer definitive medical answers. Our analyses may 
shed light more broadly on how an infectious disease spreads in a large geographical area with places where 
no empirical data is recorded or observed.  
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Abstract 

The health status of the service sector workforce is a great unknown for medical geography. Despite the 
advances carried out by spatial epidemiology to predict spatial patterns of disease incidence, there are 
important challenges unsolved. In particular, the main issue resides in the ability to effectively simplify and 
visually represent the problem domain, given the need to cover very different service activities and, at the 
same time, consider the impact of numerous emerging risk factors such as those stemming from bioclimatic 
and socioeconomic variables. This article proposes a new approach that allows to consider, simplify, prioritise 
and visualise multiple occupational health risk factors giving rise to not healthy workers. For that, it is used a 
twofold approach based on an innovative synergy between Bayesian machine learning and geostatistics, to 
analyse up to 74.401 occupational health surveillance tests gathered between 2012-2016 in Spain. This solution 
allows to extract relevant patterns over those risk factors that cannot be further discriminated in the Bayesian 
network, such as spine or limbs observations, depicting distribution maps of key differentiating variables 
computed by an ordinary kriging approach. 

 
Keywords: Health data; Information theory; Ordinary kriging; Target analysis.  
 

1. Introduction 

The service sector, generally known as the tertiary sector of the economy, consists of the provision of services 
to other businesses, including end consumers. Services generate approximately 70% of the European Union’s 
Gross domestic product (GDP) and employment (Eurostat, 2022). Some of the most common areas of the 
service sector are tourism (e.g., accommodation, travel agents), catering, education, real state, transport, and 
financial-related services. The variety of possible activities within this sector makes extremely complex the 
estimation of the health status of their workforce.  

This aspect has been accentuated by the impact of the COVID-19 pandemic (Chang et al., 2021). Overall, men’s 
and women’s work tasks are in many cases considerably different, triggering occupational health risks for 
each gender. Despite the advances carried out by spatial epidemiology methods to predict spatial patterns of 
disease incidence, the abundance and accuracy of occupational health risk maps are still very limited (Gerassis 
et al., 2021). This is due in part to the multiple variables to represent without a clear approach to simplify the 
problem domain, and even more, to find out those differentiating variables. To this situation, it must be added 
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the already undeniable impact on the health of climate change (Orlov et al., 2020). The rise in temperatures is 
expected to open the door for an increasing number of pathologies whose effects can worse at work. 

In this respect, given the outcomes of numerous investigations related to the effect that the climate change has 
on morbidity, reduced productivity of people, and increased sick leaves (Ebi et al., 2021; Wondmagegn et al., 
2021) is necessary to bring a new perspective that addresses these challenges. For that, this study aims to 
develop an innovative approach, based on a methodological decision-to-visualization process that bears into 
consideration the impact of bioclimatic and socioeconomic variables as any other medical variable as part of 
the decision making process of a worker health status and associated occupational risks.  

In practice, this research aims to improve the projections of occupational health risk factors and the 
characterization of the health status, which is the target node of the model, exploiting the combination of 
Bayesian machine learning and spatial techniques. In that manner, the added value is the possibility to identify 
and characterise those variables that may have a differentiating impact that apparently is not meaningful from 
a mathematical point of view. All in all, the results of this research work are expected to be one more 
contribution towards the medical services of the future, where the patient health status will not be any more 
subject to only a series of traditional medical tests and underlying medical conditions (Awotunde et al., 2021). 

2. Material and Methods 

2.1. Data characterization 

A total of 74,401 occupational health surveillance tests gathered from workers belonging to the service sector 
in the period between 2012-2016 throughout the Spain territory were used as a medical data source for this 
study. More specifically, the workers for this research database carried out activities related to administrative 
and auxiliary services (31,894), financial and insurance services (12,958), education (13,938), and hostelry 
(15,611).  Each clinical examination was undertaken according to the Spanish occupational health legislation 
(Ley 31/1995). Relevant occupational health organizations and hospital services conducted the medical tests 
gathering major information about the state of workers’ health defining the main health risk factors causing 
pathologies, including the main physical conditions and health habits.  

This study goes a step beyond traditional occupational health surveillance analyses, adding to the medical 
record of each worker a cross prediction with climatic and socioeconomic factors as an instrument to better 
characterize and predict those factors disrupting the health status. For that, Maximum Temperature (BIO5) or 
Annual Rainfall (BIO12), and Unemployment Rate or GDP are examples of the bioclimatic and socioeconomic 
variables used respectively. Procedurally, this research is conducted in four levels. First, from the 37 initial 
variables considered, a total of 26 were finally taken for modeling purposes after reducing the problem 
dimension (Level 1). In the second level of analysis, these reduced variables were used to characterize the four 
main groups of service activities (Level 2). Later, for each activity group, the health status acts as a target node 
for which the relevant patterns are ascertained (Level 3). Figure 1 provides a scheme of this methodological 
process applied. These three levels presented correspond to the development of a Bayesian methodology that 
is complemented with a geostatistical analysis (Level 4) for those parts of the network where further clarity is 
needed. 
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Figure 1 – The implemented methodological process with four levels of analysis.  

As anticipated, for those occupational health variables that cannot be further discriminated in the network, a 
higher level of granularity in the analysis is provided by carrying out a geostatistical ordinary kriging 
approach as an effective solution to extract relevant patterns and produce reliable health risk maps. Ordinary 
kriging is the most widespread method of kriging. It serves to estimate a value at a point of a region for which 
a variogram is known, using neighboring data to the estimation of an unknown location (Goovaerts, 1997). 
This approach allows focusing the spatial representation on those variables with a more differentiating nature 
across the four different groups of service activities under analysis. Spatial interpolations were carried out by 
means of Geostatistical Wizard module in ArcGIS v-10.2.2. Semivariograms were manually adjusted assuming 
spatial isotropy in the search of preferential directions. 

 

2.2. Supervised machine learning techniques for target characterization 

Recent advances in computer science offer the possibility to couple machine learning with traditional statistical 
methods such as Bayesian networks (Benavoli et al., 2017). Bayesian networks have shown their potential in 
problem domains with manifold variables of different typologies, where the medical and occupational health 
domain is a showcase of their performance. Concretely, information theory in combination with Bayesian 
networks is used to respond to the different stages of this study, quantifying the reduction of uncertainty 
brought by each medical variable to the knowledge of the health state.  

On this basis, once the Bayesian model is built as a result of the machine learning process aimed to discover 
significant relationships in the problem space search, the Kullback-Leibler (KL) divergence is used as a 
measure of strength in the relationship between two nodes that are directly connected by an arc (Conrady et 
al., 2015). This parameter allows measuring how the probability distribution in each variable drifts away from 



HEALTH, EPIDEMIOLOGY, ECOTOXICOLOGY  geoENV2022 

 
 

69 

 

the state of health (target node). From a mathematical viewpoint, let P and Q represent the distribution of two 
joint probabilities defined for the same set of variables or X nodes.  

𝐷(,`𝑃(𝑋)||𝑄(𝑋)b = 	>𝑃(𝑋)𝑙𝑜𝑔6
𝑃(𝑋)
𝑄(𝑋)

X

 

 

(1)  

 

For target node characterization, the relative weight value is shown as a fraction of the maximum KL 
Divergence value. Likewise, these weights can be depicted as the global contribution percentage of each arc 
to the target node quantifying the value between two directly connected nodes DKL(Parent|Child) and the sum 
of all KL Divergence values across the network. In addition, the independence test G is computed from the KL 
divergence of the relationship, thus its value is reckoned from the network. 

3. Results 

Given the need to clarify the understanding of occupational health risks triggering workers’ sick leave, this 
section presents the preliminary results obtained from the application of Bayesian machine learning and 
geostatistics to the occupational health data for the four service activities under analysis. The results outline 
the findings obtained based on the four methodological levels summarised in Figure 1.    

In the first place, a general Bayesian network was built delving into the statistical association stemming from 
the state of health and each variable in the model, considering all service activities (administrative and 
auxiliary services, financial and insurance services, education, and hostelry). From the resulting Bayesian 
network, a relationship analysis was carried out. The more representative parent-child connections were 
identified. These relationships are shown in Table 1, where age excels by its high impact, followed by the 
location and the total cholesterol.  

Table 1 – Characterization of the target node (health state). Relationship analysis for the most representative medical, 
socioeconomic and bioclimatic variables. 

Parent Child KL(Parent|Child) Relative weight Contribution G Test 

Health state Age 0.0521 1.0000 16.6440% 5,374.1635 

Health state Location 0.0341 0.6552 10.9056% 3,521.2995 
Health state Total Cholesterol 0.0287 0.5504 9.1604% 2,957.8012 

Health state Drug Consumption 0.0213 0.4084 6.7969% 2,194.6465 

Health state Hearing test  0.0169 0.3238 5.3896% 1,740.2371 
Health state Spine Observation 0.0149 0.2852 4.7465% 1,532.5901 

Health state Limbs Observation 0.0145 0.2789 4.6413% 1,498.6285 

Health state Physical Limitations 0.0126 0.2416 4.0214% 1,298.4567 
Health state Minimum Rainfall 0.0100 0.1922 3.1997% 1,033.1395 

Health state Population 0.0074 0.1417 2.3587% 761.5890 

Health state Annual Rainfall  0.0073 0.1410 2.3476% 758.0027 
Health state Sleep Quality 0.0068 0.1312 2.1836% 705.0538 

Health state Maximum Temperature  0.0067 0.1280 2.1306% 687.9423 
 
In the second place, four supervised Bayesian networks were built, corresponding to each of the four defined 
service activities and whose common target node was the health status of the worker. The application of a 
Naïve Bayes algorithm allowed to generate a pragmatic network structure for the analysis of the influence of 
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each variable on the health status of the workers (Figure 2). The characterization of the target node revealed 
that age, location, and total cholesterol, previously identified as the most significant factors in the general 
network of the service sector, also present a high impact on all the concrete service activities under study. In 
that context, the authors have considered the need to deepen the understanding of those variables that are a 
priori not that significant, but which may hold key differentiating aspects within each population group.  

 

 
 

Figure 2 – Supervised Bayesian network built with Naïve Bayes algorithm. The graph presents the administrative and 
auxiliary services network with the target node (health state) in the center. 

When looking at the distribution of contributions of each variable to the characterization of the state of health, 
it is found that the nervous system (15%-19%) matches to a high extent the characterization of the medical 
examinations of healthy workers (64%-70%). The most significant medical conditions conditioning these two 
states are age, total cholesterol, and location, whereas hearing problems and drug use are always reflected as 
differential variables. As an example, after an inference analysis on patients with high levels of total cholesterol 
belonging to hostelry services, a greater impact could be seen on elderly workers (>50) belonging to the 
autonomous community of the Basque Country (38.26 % of registered cases) located in the North of Spain. In 
contrast, it can be concluded the strong need to provide a higher level of granularity on the musculoskeletal 
(8%-11%) and cardiovascular (6%-9%) pathologies, as here the differences among possible additional 
differential variables, even if relevant from a mathematical point of view, they are not meaningful from a 
policy perspective (Table 2). 

The great horizontality of variables such as age, location, and total cholesterol directed this study towards the 
need to add value to those differentiating variables of the musculoskeletal and cardiovascular systems. This 
situation leads to the spatial representation of the variable’s spine observation, annual precipitation (BIO 12), limbs 
observation, and annual mean temperature (BIO 1) under an ordinary kriging approach (Figure 3). This approach 
allows identifying both a spatial distribution of spinal problems and potentially related extremities, as well as 
two clearly differentiated regions where these problems have a higher impact. Particularly, in the Northeast 
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of Spain, except Catalonia, and the South, with vascular problems such as the presence of varicose veins. As 
for the Western part of Spain, a higher rate of spinal problems, derived from muscle contractures or other 
minor discomforts, is identified. Based on Bayesian results, it can be demonstrated that this type of injury is 
related to a great extent to pathologies of the musculoskeletal system which is potentially present in service 
activities such as hospitality (31.23%) and administration (32.05%). In addition, it is also seen how these 
pathologies are also an underlying cause for the appearance of problems in the extremities. 

Table 2 – Local impact analysis of data over the target node for the states representing musculoskeletal and 
cardiovascular systems by service activity.  

 Musculoskeletal System Cardiovascular System 

 Relative Binary Mutual Information Relative Binary Mutual Information 

Group of Work Spine Observation Annual Rainfall Limbs Observation Annual Temperature 

Administrative and auxiliary services 3.4737% 0.64% 1.7552% 1.3914% 

Financial and insurance activities 2.2066% 0.5638% 1.5169% 0.9984% 

Education 3.6072% 0.7496% 0.9042% 0.4487% 

Hostelry 3.2213% 1.3584% 2.1152% 0.0360% 

 
 

. 

Figure 3 – Distribution maps for annual mean temperature (ºC), annual rainfall (mm), and spine and limb observation 
variables using rate data between 2012 and 2016 interpolated by Ordinary Kriging. 
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4. Discussion and Conclusions 

Given the greater complexity of characterizing the musculoskeletal and cardiovascular systems, and the 
impossibility of achieving greater conceptual discrimination of the detailed variables with Bayesian networks, 
a new level of granularity is needed. Here, an ordinary kriging approach enters into play, offering the 
possibility to differentiate and obtain meaningful policy findings at a regional scale, revealing what are the 
exact implications, above all, of the bioclimatic variables and how they affect unhealthy workers within the 
service sector. 

As a showcase of the potential of this combined approach, Figure 4 shows the Bayesian results of the inference 
analysis on the medical variables spine and limbs observation, and the bioclimatic variables annual mean 
temperature (ºC) (BIO1) and annual rainfall (mm) (BIO12). This inference is carried out with two variables of 
reference that are the service sector activities (group of work) and the state of health (pathology). In general, 
the results allowed to conclude a greater impact of spinal problems for hostelry activities, as well as a direct 
relationship of this pathology with limb problems, increasing the cases of workers with adverse vascular 
conditions by 19.64%. This is an example, which shall be complemented always with a more granular spatial 
mapping to deepen on the regional variations.  

 

 

Figure 4 – Inference results for the work groups when the evidence reflects spinal problems. 

 

In conclusion, the results of this study revealed that variables such as age, location, and cholesterol, with 
contributions to the general network between 9-17%, are generally critical for the characterization of the health 
status of workers in the service sector. To a second extent, it was possible to identify a series of differentiating 
variables such as pine observation, annual precipitation (BIO 12), limbs observation, and annual mean 
temperature (BIO 1) that despite not being extremely significant from a mathematical point of view, they play 
a key role and show a great impact at regional level.  

Likewise, this article exposes the potentialities of the combination of Bayesian machine learning 
complemented by geostatistics to translate the complex occupational health problem of workers’ health status 
into evident visual findings that can feed medical policy developments across different service activities. At 
this stage, it is already possible to demonstrate the high influence of bioclimatic and socioeconomic variables 
within the medical decision making of a worker health state. Looking forward, further analysis is needed to 
identify more health risk factors that can be derived, for example, from the impact of high temperatures or 
income level. In this respect, depending on the data available and the scope of the analysis, more sophisticated 
geostatistical approaches would have also to be explored.    

  
 
 



HEALTH, EPIDEMIOLOGY, ECOTOXICOLOGY  geoENV2022 

 
 

73 

 

References 

A. Benavoli, A., G. Corani, J. Demsar, M. Zaffalom. Time for a change: A tutorial for comparing multiple classifiers through 
Bayesian analysis. Journal of Machine Learning Research. 2017. 
A. Orlov, J. Sillmann, K. Aunan, T. Kjellstrom, and A. Aaheim, “Economic costs of heat-induced reductions in worker 
productivity due to global warming,” Glob. Environ. Chang., vol. 63, no. September 2019, p. 102087, 2020, doi: 
10.1016/j.gloenvcha.2020.102087. 
B. Y. Wondmagegn et al., “Increasing impacts of temperature on hospital admissions, length of stay, and related healthcare 
costs in the context of climate change in Adelaide, South Australia,” Sci. Total Environ., vol. 773, p. 145656, Jun. 2021, doi: 
10.1016/J.SCITOTENV.2021.145656. 
C.-H. Chang, R. Shao, M. Wang, and N. M. Baker, “Workplace Interventions in Response to COVID-19: an Occupational 
Health Psychology Perspective,” Occup. Heal. Sci., vol. 5, no. 1–2, pp. 1–23, Mar. 2021, doi: 10.1007/S41542-021-00080-
X/TABLES/1. 
Eurostat, “Contributions of each sector - Institutional sector accounts - Eurostat”.  European Commission, 2022. 
https://ec.europa.eu/eurostat/web/sector-accounts/detailed-charts/contributions-sectors 
J. B. Awotunde, A. E. Adeniyi, R. O. Ogundokun, G. J. Ajamu, and P. O. Adebayo, “MIoT-Based Big Data Analytics 
Architecture, Opportunities and Challenges for Enhanced Telemedicine Systems,” Stud. Fuzziness Soft Comput., vol. 410, 
pp. 199–220, 2021, doi: 10.1007/978-3-030-70111-6_10. 
K. L. Ebi et al., “Extreme Weather and Climate Change: Population Health and Health System Implications,” 
https://doi.org/10.1146/annurev-publhealth-012420-105026, vol. 42, pp. 293–315, Apr. 2021, doi: 10.1146/ANNUREV-
PUBLHEALTH-012420-105026. 
P. Goovaerts. Geostatistics for Natural Resources Evaluation. Applied Geostatistics Series. Oxford University Press, New 
York, NY (USA), 837 483 p., 1997. 
S. Conrady, L. Jouffe. Bayesian Networks & BayesiaLab - A Practical Introduction for Researchers. Bayesia USA. 2015. 
ISBN-10: 0996533303. 
S. Gerassis, C. Boente, M.T.D. Albuquerque, M.M. Ribeiro, A. Abad, J. Taboada, “Mapping occupational health risk factors 
in the primary sector—A novel supervised machine learning and Area-to-Point Poisson kriging approach” Spatial Statistics, 
vol. 42, 100434, 2021.  
 
 
 
 

  



HEALTH, EPIDEMIOLOGY, ECOTOXICOLOGY  geoENV2022 

 
 

74 

 

FUNCTIONAL DATA ANALYSES TO MODEL COVID-19 WAVES  

Maria João Pereira (1)* - Leonardo Azevedo (1) - Manuel Ribeiro (1) - Amilcar Soares (1) 

CERENA, Instituto Superior Tecnico, Universidade de Lisboa, Lisboa, Portugal (1) 
* Corresponding author: maria.pereira@tecnico.ulisboa.pt 

Abstract 

Since its outbreak, the SARS-CoV-2 pandemic has been showing complex dynamics in both time and space. 
Over two years of pandemic different strategies and polices have been adopted by countries to control and 
mitigate the impacts of the disease propagation. But there is still much to understand and lessons to learn, 
about how human behaviour, effectiveness of vaccines over time, infection prevention policies, changes of 
coronavirus itself and the number of people who are vulnerable controlled the several COVID-19 waves in 
each country. In this work we analysed the spatiotemporal patterns of the 5 COVID-19 waves in Portugal 
using geostatistical functional data analysis. 

The daily number of infection data by municipality reported by the Portuguese Directorate-General for Health 
are used to build time series of infection since the beginning of the outbreak in Portugal. We divided the time 
series in 5 sub-sets corresponding to the 5 waves. We employ a dimensionality reduction of these curves using 
functional principal component analysis. The objective of this step is twofold, detect municipalities with 
similar temporal evolution and get a small number of coefficients to describe the temporal pattern of the series. 
The low-dimension coefficients were used cluster municipalities with similar behaviour. Results for the 
different waves were analysed and compared giving new insights about data and allowing to set up new 
hypothesis about disease spread.   
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Abstract 

Infectious diseases such as COVID-19 may have a significant impact on society, overloading health systems 
and affecting individuals' lives at different levels. For example, they can lead to job losses, increase inequalities 
and cause mental health problems. Therefore, it is crucial to understand how these diseases may spread and 
how decision-makers may act to prevent them. In this context, different mathematical models have been 
proposed to describe how the number of infected cases evolves over time. An often-popular choice is the SIR 
compartment model, in which individuals are assigned to three different groups, namely Susceptible (S), 
Infected (I), and Recovered (R), and are modeled according to a system of Ordinary Differential Equations 
(ODEs). Still, deterministic approaches, especially when the population size is not sufficiently large, may not 
correctly describe the phenomena of interest, and models with stochastic components may perform better in 
explaining the disease-spreading dynamics. In this work, we reinterpret the SIR model and write it as a system 
of Stochastic Differential Equations (SDEs) with respect to time, describing the intensity functions of spatio-
temporal point processes for the occurrence of susceptible, infected, and recovered individuals in the studied 
area. In particular, the introduced randomness aims to account for the uncertainty on the newly infected 
individuals. For such a system, we propose a numerical solution, and describe the spatial dependence through 
a Cox process. To conclude, our work approaches a common problem in epidemiology from a different point 
of view, namely point processes in space and time, which may bring new insights into how infectious diseases 
can be modeled.  
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Abstract 

There is an urgent need for ecological approaches to assess accessibility to healthcare services for adolescents 
in low- and middle-income countries (LMIC; Mark 2013). The Demographic and Health Surveys (DHS) 
program is a principal source of data on the provision of health services in LMICs, from which ecological 
studies can be conducted. In particular, the DHS has collected data from a survey on individual households 
and another on health facilities and service delivery environment in LMICs. The present study focuses on the 
latter, referred to as Service Provision Assessment (SPA) surveys, which provides the information about the 
characteristics of health facilities and services available in individual country. In recent years, SPAs also 
collected geographic information of health facilities that participated the survey, although the spatial coverage 
of currently available data is limited given that they are based on samples rather than census. To improve data 
availability, we developed multiple spatial interpolation methods to estimate key information on health 
service availability and service delivery environments using both geostatistics (e.g., Kriging with external 
drift) and machine learning algorithms (e.g., stacked ensemble model). Prior to the model development, we 
identified key geospatial covariates that represent the service delivery environment of health facilities. Here, 
we explored machine learning algorithms to capture potentially complex interactions and non-linear effects 
among geospatial covariates, and geostatistical interpolation to account for spatial structure (i.e., spatial 
correlation) of health service availability in the study area. The model prediction surfaces generated from 
multiple interpolation methods were further aggregated at subnational administrative level 2 (i.e., small scale 
administrative boundary). For geostatistical models, the uncertainty associated with estimates of health 
service availability was quantified. Model performance was evaluated following Yoo et. al. (2021) using two 
criteria—prediction accuracy and classification error. The performance evaluation of the geostatistical linkage 
method, demonstrated using information on the general service readiness of sampled health facilities in 
Tanzania, showed that geostatistical methods and machine learning methods are comparable in terms of both 
prediction accuracy and classification error. However, we also found that the results of machine learning 
models vary spatially, which is explained by the uncertainties in the individual model algorithm. Among the 
machine learning algorithms, the use of an ensemble model approach seems more adequate than relying on 
predictions from any single modeling method. The proposed geospatial approach minimizes the 
methodological issues and has potential to be used in various public health research applications where facility 
and population-based data need to be combined at fine spatial scale. Particularly, we expect that the prediction 
uncertainty from geostatistical models will be useful to establish reliable linkages between DHS household 
surveys (i.e., indicators for population, health, and nutrition) and SPA surveys (i.e., service availability and 
delivery environments). 
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Abstract 

With the emergence of COVID-19 pandemic in Portugal, a Block Direct Sequential Simulation (Block DSS) tool 
has been developed to model COVID-19 spread in mainland Portugal (Azevedo et al., 2020) and support 
decision-making by health authorities and policy makers. Besides mapping the risk, the model includes the 
assessment of spatial uncertainty of estimates. Yet uncertainty is difficult to be visualized with the estimated 
risks and it is usually disregarded as a tool to support decision-making process. This can be misleading since 
the extent of risk uncertainty varies throughout the spatial domain. 

To overcome this problem, an R package performing pixelation (Taylor et al., 2020) has been proposed to 
visualize uncertainty in maps of disease risk into a single map. The application is illustrated to map 2017 P. 
falciparum (a parasite causing malaria in humans) incidence in central Africa as proof of concept. The 
proposed solution provides disease risks maps with varying pixel size such that areas of high average 
uncertainty have large pixels, while areas with low average uncertainty have small pixels. This means that in 
areas where uncertainty is higher, the risk is smoothed over a larger area by performing pixelation of 
uncertainty (i.e., by increasing the pixel size). The pixelated map summarizes effectively in one single map the 
two key elements required in disease risk mapping and provides policy makers with a decision-support tool 
capable of rapidly identify high risks in areas with high spatial uncertainty and high risks in areas with low 
spatial uncertainty preventing fine-scale inference in regions with high-risk uncertainty. 

While Block DSS algorithm is implemented as a stand-alone software tool and distributed free of charge, it is 
not open source, and its use can be cumbersome. Therefore, programming code solutions combining analysis 
of disease mapping based on the modelling approach proposed by Azevedo and colleagues (Azevedo et al., 
2020) with the pixelation approach to visualize uncertainty in maps of disease risk are very limited, require a 
considerable programming effort and a high level of expertise. 

To address this gap, we present a complete open-source R code for the rapid computation and visualization 
of uncertainty in maps of disease risk in a single map, based on the COVID-19 geostatistical modelling 
approach proposed by Azevedo and colleagues (Azevedo et al., 2020). The resulting map can be a valuable 
tool to help policymakers to make informed decisions about COVID-19 pandemic. 
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Abstract 

Identifying parameters based on state variables is a well-known task in groundwater modeling. In the last 
decades, many works have focused on the assimilation of observed data (in hydrogeology, the hydraulic head) 
to identify model parameters heterogeneity (in hydrogeology, the hydraulic conductivity) by using variants 
of the ensemble Kalman filter (EnKF). In the EnKF, the assimilation is based on a prediction of how the system 
will progress, followed by a correction of the parameters based on the discrepancy between predictions and 
observations. The correction is performed based on a linear interpolation that can only capture the linear 
component of the non-linear relationship between conductivities and piezometric heads. In contrast, machine 
learning algorithms, besides having permeated all ambits of science and technology today, are known for 
capturing the relationship between dependent and independent variables, whether linear or not. Although 
these algorithms have proven their ability to replace process-driven models with data-driven ones to predict 
piezometric heads or solute concentrations from ancillary variables, they are seldom used for inverse modeling 
purposes. In this work, we propose to couple machine learning algorithms with the well-established EnKF to 
perform stochastic inverse modeling. The plan is to take advantage of the ensemble of realizations to train 
machine learning algorithms and to use it to perform a non-linear correction, which should give better results 
than the one obtained with the EnKF. The validity of the proposed method was demonstrated by applying it 
in a synthetical example and, for the sake of completeness, the results were compared to the results obtained 
by using the EnKF. The proposed method not only has appropriately characterized the patterns of spatial 
variability of the reference fields and reduced the uncertainty but did it by using a small number of realizations 
and historical data. Despite some limitations related to the difficulty about the definition of parameters of the 
machine learning algorithms, the proposed method has proved to be a powerful tool to characterize 
subsurface heterogeneity. 

Research financed by the InTheMED project, which is part of the PRIMA Programme supported by the 
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Abstract 

Seismic oceanography is a multidisciplinary research field that provides insights about ocean processes 
happening at large- to small-scales, leveraging already available common marine multichannel seismic 
reflection data (MCS) to create high-resolution images of the structure of the ocean (Biescas et al., 2008).  

This work exemplifies the potential of seismic oceanography data to study the ocean by processing and 
inverting a set of three parallel two-dimensional MCS profiles acquired in the Madeira Abyssal Plain 
(Northeast Atlantic) during June 2006. 

The MCS data undergoes a series of processing steps aiming to image: i) the structure of the water column 
close to the sea surface, by attenuating the direct wave arrivals; ii) and preserving the true seismic amplitudes 
required to invert the seismic data for the physical properties of the ocean (i.e., ocean temperature and salinity). 
The processed seismic oceanography profiles clearly identify two layers: the top layer, above approximately 
2000 m, has bright and coherent reflection content, while the bottom layer, below this depth, is reflection-free 
as expected for the homogeneous North Atlantic Deep Waters (Segade et al., 2015). The top layer comprises 
several features of interest namely, eddies at the expected Mediterranean Outflow Water depths, steeply 
dipping reflectors, which indicate the possible presence of frontal activity or secondary dipping eddy 
structures and strong horizontal reflections between intermediate water masses suggestive of double diffuse 
processes. 

While the structural interpretation of the observed seismic reflections provides valuable oceanographic 
insights, the ability to predict the ocean temperature and salinity allows a deeper understanding of these 
processes. We show the application of a geostatistical seismic oceanography inversion methodology to these 
data and its spatial interpolation in three-dimensions. The geostatistical inversion combines information from 
different sources (i.e., direct and indirect measurements) about the temperature and salinity of the ocean. The 
inverted models reproduce the overall vertical distribution of both properties, as interpreted from the global 
ocean models. Also, these models capture the oceanic features of interest at a finer scale, revealing the 
filamentation structures around the Eddie's core and, specifically, the warm intrusions around the 
homogenous nucleus. 
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Abstract 

We consider a Bayesian inversion problem in which the posterior distribution of (hydro)geological parameters 
of interest is inferred from geophysical data. A critical aspect in this setting is the noisy petrophysical 
relationship linking the hydrogeological target parameters to the geophysical properties sensed by the 
geophysical measurements. To account for the uncertainty resulting from this noisy petrophysical 
relationship, the intermediate geophysical properties are treated as latent (unobservable) variables. To 
perform an inversion in such a random effect model, the intractable likelihood of the (hydro)geological 
parameters given the geophysical data needs to be estimated. We aim to achieve this by approximating the 
likelihood with a Gaussian probability density function based on local linearization of the geophysical forward 
operator. This allows including the effect of the noise in the petrophysical relationship by a corresponding 
inflation of the data covariance matrix. The new approximate method is compared against the general 
correlated pseudo-marginal (CPM) method estimating the likelihood by Monte Carlo averaging over samples 
of the latent variable. We compare the performances of the two methods on synthetic test examples, in which 
we infer for porosity using crosshole ground-penetrating radar (GPR) first-arrival travel times. By varying the 
non-linearity and levels of noise in the petrophysical relationship, we elaborate recommendations for the 
choice of the appropriate method depending on the problem under consideration. The linearized Gaussian 
approach, while attractive due to its relative computational speed, suffers from a decreasing accuracy with 
increasing noise in the petrophysical relationship and/or non-linearity. The computationally more expensive 
CPM method, by comparison, performs very well even for strongly non-linear settings with high amounts of 
noise in the petrophysical relationship.  
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Abstract 

Understanding the physical processes in the critical zone requires accurate predictions of the spatial 
distribution of rock and fluid properties, such as porosity and fluid (water and air) saturations. On mountain 
hillslopes, snow precipitation infiltrates the subsurface and recharges groundwater aquifers. The spatial 
distribution of the water volume depends on the porosity of the rocks and on the fluid saturations in the pore 
space. These petrophysical properties of porous rocks can be predicted from surface geophysical data, such as 
seismic refraction and time-lapse electrical resistivity tomography. This modeling problem can be formulated 
as a geophysical inverse problem. We present a Bayesian inversion approach based on the ensemble smoother 
algorithm to generate multiple realizations of porosity and water saturation conditioned on geophysical 
properties, specifically P-wave velocity of seismic waves and electrical resistivity. The model realizations are 
generated using a geostatistical algorithm, for example the probability field simulation, and updated using 
the ensemble smoother algorithm. The prior distribution includes a spatial correlation function such that the 
model realizations mimic the geological spatial continuity. The relation between the properties of interest and 
the measured data is a multivariate rock physics model based on Hertz-Mindlin contact theory for the elastic 
component and Archie’s equation for the electrical component. The model accounts for pressure and 
mineralogy changes in depth. The result of the inversion includes a set of realizations of porosity and water 
saturation, that are used to infer most likely model and its uncertainty. The posterior uncertainty is analyzed 
in a low-dimensional space using multi-dimensional scaling. The results are compared to those of traditional 
Bayesian inversion methods and the predictions of the proposed method show a higher level of accuracy than 
traditional inversion algorithms. The proposed approach is tested on synthetic data and applied to a real 
geophysical dataset measured along a 60 m section of mountain hillslope near Laramie, Wyoming, USA. The 
results are validated using direct observations of porosity and water saturation from core samples and 
borehole measurements. The so-obtained porosity and water saturation maps are used to predict the spatial 
distribution of the subsurface water produced from snowpack melting that flows and is stored in mountain 
watersheds. These results can reduce the uncertainty in hydrological model predictions and can be used to 
make more informed decisions on the water management.  
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Abstract 

This presentation combines the S-STBM method with the pluriGaussian simulations for the conditioning of 
indirect data when modeling categorical hydrogeological systems. It emphasizes the advantages of the 
sequential construction of a facies field using S-STBM as the calibration method. The boreholes conditioning 
is done quickly by replacing the slow Gibbs sampler method with an approach based on the calibration of 
latent Gaussian fields subject to inequality constraints. We use a novel approach based on parametrization to 
reduce the optimization space, generally multivariate with the pluriGaussian simulations, to a unidimensional 
space. The methodology is exposed, two case studies are presented, and future applications envisaged are 
mentioned such as the simultaneous calibration of facies units and hydrogeological properties. 

 
Keywords: Inverse problems; PluriGaussian simulations; Constructive calibration; Spectral simulations; Gradual 
deformation. 

1. Introduction 

Geostatistical simulations provide non-unique models to illustrate uncertainties and assess environmental 
risks associated with a geological model (Chilès and Delfiner, 2012). For categorical fields, a commonly used 
approach covering a wide variety of geological phenomena for groundwater aquifers is the pluriGaussian 
simulations (PGS) where one or many latent Gaussian random fields (L-GRF) are truncated to assess the 
categorical field (Armstrong et al., 2011). However, conditioning these models to indirect data (e.g., hydraulic 
heads, drawdowns, first arrival times between wells, proportion maps, or tracer tests) is a tedious step due to 
the non-linear relationship between the indirect data, the geological properties, and the discrete nature of the 
geological facies. Optimization methods are one of the most widely used approaches to best calibrate the 
response of an aquifer to available indirect observations (Hu et al., 2001; Lauzon and Marcotte, 2022). 

A recently developed approach, the sequential spectral turning band method (S-STBM), consists of building 
from zero the aquifer model constrained to indirect observations like an engineer building a plane while flying 
it (Lauzon and Marcotte, 2020). The method consists of sequentially adjusting each band to minimize the error 
between the observed data and the simulated data. The S-STBM has proven itself in both continuous and 
discrete domains (especially when combined with truncated and pluriGaussian simulations) for the 
calibration of first arrival travel times between wells, the conditioning of boreholes data, and the calibration 
of pressure heads (Lauzon and Marcotte, 2020a, 2020b, 2022). For categorical problems, the recent study by 
Lauzon and Marcotte (2022) showed that S-STBM is better suited to calibrate indirect data on categorical 
problems than usual calibration methods such as gradual deformation, and iterative spatial resampling. 
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This article seeks to apply the S-STBM method combined with PGS methods to build efficiently categorical 
fields calibrated to indirect data applied to aquifer models. We first describe the S-STBM approach, present 
how to perform fast conditioning of categorical data using S-STBM instead of the well-known Gibbs sampler, 
and inform about PGS simulations. The novel approach presents in this paper concerns the phase vector 
parametrization which reduces the n-dimensional optimization process to a one-dimensional problem. This 
aims to significantly reduce the number of calls to the forward model, a time-consuming step in inverse 
modeling. Next, we present two case studies to illustrate the calibration of a five-facies model of a confined 
aquifer to borehole data and pressure heads. Possible future applications in environment and sedimentary 
deposits are discussed. 

2. Theory and Methodology 

2.1. The sequential spectral turning bands method (S-STBM) 

The S-STBM approach (Lauzon and Marcotte, 2020a) consists of building a GRF by adding cosine functions 
where each new phase 𝜑4 	𝜖	[0,2𝜋] is optimized to minimize any objective function: 

𝑌4(𝑥) = ¯𝑖 − 1
𝑖 𝑌4O&(𝑥) + ¯

1
𝑖 √2 cos

(〈𝜔4 , 𝑥〉 + φ4) 
(1) 

where 𝑌4(𝑥) is the GRF at iteration 𝑖 defined at coordinate 𝑥 in ℝY, 𝑑 is the dimension of the GRF, 〈∙,∙〉 is the 
scalar product and ω4 	 is a frequency vector randomly oriented over a unit half-sphere of ℝY, and sample 
randomly from the radial spectral density of a covariance function 𝐶 (Lauzon and Marcotte, 2020a). Note that 
the coordinate system 𝑥 is grid free, the computational complexity is 𝑂(𝑛), 𝑛 is the number of points, and the 
scalar products 〈𝜔4 , 𝑥〉 can be computed simultaneously for all points 𝑥 using parallelization on GPU (Lauzon 
and Marcotte, 2020a). Typically, at least one hundred phases are required to converge to multivariate Gaussian 
distribution (Lauzon and Marcotte, 2022).  

 

Lauzon et Marcotte (2020a) have shown that for an equal number of calls to the flow simulator, it is better to 
shallow optimize the phase and add more cosine functions than the reverse. This characteristic is used in 
section 2.4 to propose a new optimization strategy when S-STBM is combined with PGS methods.  

 

One advantage of S-STBM over usual calibration methods (e.g., phase annealing, gradual deformation, 
iterative spatial resampling) is its constructive nature which eliminates the requirement of an initial state (i.e., 
𝑌M(𝑥) is an empty field for S-STBM). This ensures that S-STBM builds the property fields directly without 
having to adapt to the unfavorable characteristics of the initial state, a reason why the usual algorithms show 
slow convergences when they are combined with PGS simulations (Lauzon and Marcotte, 2022).  

 

2.2. PluriGaussian simulations (PGS) 

The idea behind PGS methods is to combine one or many L-GRFs simulated over the area of interest and 
assign facies according to the simulated values at each point. The assignation leads to the categorical field, 
𝒞(𝑥), and this is done using a truncation rule 𝑇:ℝZ → ℕ that transforms the vector formed of the 𝑝 L-GRFs to 
a categorical field. The function 𝑇 takes a coordinate 𝑥, forms a vector with the respective values of the 𝑝 L-
GRFs at coordinate 𝑥, and returns a categorical variable. The categorical field is obtained when all vectors are 
transformed (See Fig.1 for an example):  

𝑇 ¾𝑌&(𝑥), 𝑌6(𝑥), … , 𝑌Z(𝑥)¿ → 𝒞(𝑥) (2) 
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A wide variety of geological phenomena may be simulated using PGS methods. One way to simulate 
heterogeneity in reservoir and aquifer modeling is to generate two or more PGS models that reflect different 
geological layouts. For example, with Bi-PGS where one represents the sedimentation process and the other 
the diagenesis (Renard et al., 2008). Another possibility to generate complex phenomena consists of using 
correlated L-GRFs through the linear model of coregionalization where the GRF are obtained by linear 
combinations of underlying variables (Armstrong et al., 2011). Its generalization to shift operator, 
regularization over support, or partial derivatives along orthogonal directions can help to model asymmetric 
cross-covariances (Marcotte, 2012). For example, cyclic and rhythmic facies architectures observed in 
sedimentary rocks sequences have been modeled using a shift operator which mimics the spatial asymmetric 
relationships of a sedimentary deposit (Blévec et al., 2020). 

 

Figure 1 – Example of a pluriGaussian simulation with two uncorrelated L-GRFs. The dotted arrows represent an 

example of truncation described by Eq. 2. An example of notions of facies domain )𝒟+𝑇!-., facies boundary )𝑆𝒟#$!%. and 

distance +𝑑&(𝑌(𝑥&)|𝒞(𝑥&) = 𝑗)- is shown on the truncation rule for the yellow facies (facies 5) (See Eq.3 and Eq.4).  

2.3. Alternative to the Gibbs sampler for boreholes conditioning 

The idea behind the Gibbs sampler is to condition GRFs to inequality constraints. This is a Markov chain Monte 
Carlo algorithm in which each iteration consists of replacing a randomly selected point with a random 
Gaussian value drawn from a truncated Gaussian distribution derived from simple kriging. Thus, the Gibbs 
sampler aims primarily to ensure the constraints on the Gaussian values are respected and subsequently 
introduces the spatial correlation by drawing from the conditional distributions considering all other points, 
a slow and time-consuming step when several constraints are present (Marcotte et Allard, 2018). Here, we 
adopt an opposite point of view. We rather sequentially build a field where the spatial correlation is 
reproduced by construction and progressively enforce the constraints on the Gaussian values by optimizing 
an objective function. 
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To constrain the L-GRFs by S-STBM, the categorical observations, 𝒞(𝑥!), are sequentially introduced by the 
optimization of each phase ϕ4,Z where ϕ4,Z refers to the ith phase of the 𝑝𝑡ℎ L-GRF. At each iteration, 𝑝 phases 
must be optimized using multivariate algorithms. As the geological problem is categorical, gradient-based 
optimization algorithms cannot be applied (Hu et al., 2001). We introduce in section 2.4 a new methodology 
based on the idea of gradual deformation to explore the space of the phase-vector using a single parameter to 
optimize.  

To define the objective function to be minimized, the notions of facies domain and facies boundary are 
introduced. The domain 𝒟`𝑇5b refers to each Gaussian vector 𝐴 ∈ ℝZ which, when 𝑇(𝐴)	is applied, gives facies 
𝑗 (see Eq. 3). We note the boundary of a domain 𝑆𝒟\]-^. The distance between a categorical observation 𝒞(𝑥) =

𝑗 and the Gaussian vector 𝑌(𝑥) is 0 when 𝑇`𝑌(𝑥)b = 𝑗, otherwise it is defined as the minimum Euclidean 
distance 𝐷 to the boundary 𝑆𝒟\]-^. The objective function (𝑂𝐹) is the average of these shortest distances (see 

Eq. 4). 

𝒟`𝑇5b = {∀𝐴 ∈ ℝZ|𝑇(𝐴) = 𝑗} 

 

(3) 

𝑂𝐹(𝑌) = &
-
∑ 𝑑!-
!%& (𝑌(𝑥!)|𝒞(𝑥!) = 𝑗),	where	

𝑑!(𝑌(𝑥!)|𝒞(𝑥!) = 𝑗) = Ã
𝑚𝑖𝑛

∀`a'
𝒟/0-1

{𝐷(𝑌(𝑥!), 𝑌)}													𝑖𝑓	𝑌(𝑥!) ∉ 𝒟`𝑇5b

0																																										𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4) 

where M is the number of categorical observations. Fig. 1 shows an illustration of Eqs 3 and 4 for the facies 
numbered 5 (the yellow one in Fig. 1). Note that the domain of each facies can be arbitrarily complex. It may 
be composed of many separate polygons, each one not necessarily convex as in D’or et al. (2017)    

 

2.4. Optimization using gradual deformation 

In PGS methods, truncation needs two or more GRFs. This involves several phases to be optimized at each 
iteration for the purpose to calibrate indirect data. In such conditions, the number of calls to the flow simulator 
may be higher than the univariate case to find an adequate set of parameters. This is due to the discrete nature 
of the geological models which proscribes the uses of gradient-based optimization methods. 

We propose instead to take advantage of the building nature of S-STBM. As mentioned before, we only need 
to optimize slightly each phase, φ4,Z, and add several cosine functions to get an adequate calibrated field.  The 
idea is to reduce the optimization process to a univariate one using a parametrization on the phase vector. To 
achieve this, gradual deformation is used. Two Gaussian white noise vectors of length 𝑝, 𝑦& and 𝑦6, are fused 
(see Eq. 5). The inverse anamorphosis, ΨO&, enables to transform the normal vectors towards the theoretical 
distribution of the initial parameters, here, an independent uniform distribution on	[0,2𝜋] for each phase.  

φ4,G =	ΨO&`𝑦&,4,G cos(𝑡) +𝑦6,4,G sin(𝑡)b (5) 

3. Results 

The MATLAB Reservoir Simulation Toolbox (Lie, 2019) was used to perform a synthetic example of a confined 
aquifer made of five geological units model using PGS with two uncorrelated L-GRFs. The truncation rule is 
the one shown in Fig. 1. The first example shows the conditioning of borehole data and the second one inverts 
the categorical field from the pressure heads. The same reference is used in both scenarios. The field size is 100 
m × 100 m and is discretized on a 101 × 101 grid. The upper and lower sides were set as no-flow boundaries 
and fixed head boundary conditions of 1 m and 0 m were set on the left and right sides, respectively. The flow 
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simulation was performed in a steady state. The first L-GRF is modeled using an isotropic exponential 
covariance with an effective range of 15 m. The second L-GRF refers to the cubic covariance with an anisotropic 
range of ax=50 m and ay=10 m.  

 

3.1. Example 1: Conditioning to borehole data 

One hundred samples are randomly selected from the reference for conditioning data (black circles in Fig.2(a-
d)). The conditioning is performed using the methodology explained previously. The stopping criteria are the 
total number of OF evaluations (here 5000 OF calls) or when the OF returns a value of zero, indicating that the 
conditioning was performed adequately. Fig. 2(a-d) illustrates the reference (a) and three simulations (b-d) 
calibrated to the one hundred borehole data.  

For our case, convergence is obtained quickly in very few iterations (See Fig. 2(e)).  We stress that after 1000 
iterations, the average distance is lower than 0.001 indicating that the remaining perturbations required to 
fulfill the constraints are small everywhere (i.e., close to their boundaries). One may end the calibration by S-
STBM at this stage and switch to a T-SGS approach as proposed by Lauzon and Marcotte (2020b) to force the 
conditioning of the remaining points as they are extremely close to the boundary. Finally, Fig. 2. (f-h) presents 
respectively the variogram for the first L-GRF and the second L-GRF. The match between simulated and 
theoretical variogram is almost perfect for the two L-GRF. 

 

Figure 2 – Reference categorical field followed by three calibrated simulations by S-STBM to borehole data (black circles: 
localization of the 100-conditioning data). e) Evolution of the objective function (black line: mean objective function over 
100 simulations; gray lines: objective function of the 100 calibrated realizations). f) Isotropic exponential variogram of the 
first L-GRF (effective range of 15m). g-h) Respectively, anisotropic cubic variogram along the x-direction (ax=50) and the 

y-direction (ay=10) (black line: theoretical model; gray lines: experimental variogram of the 100 calibrated realization; 
blue markers: mean experimental variogram). 

3.2 Example 2: Calibration to pressure heads 

The same confined aquifer was used to invert categorical fields to pressure heads (Fig.2 (a) and Fig. 3(a)). A 
pumping well is located at the center of the field with a pumping rate of 0.003 mT/s. The 21 pressure heads 
obtained from a constant rate pumping test (black Xs in Fig. 3(c)) formed the calibration data. Conditioning to 
borehole data is performed using post-conditioning by kriging (Chilès and Delfiner, 2012). The latent Gaussian 
values are the ones obtained in the first example. So, the calibrated latent Gaussian at borehole locations values 
associated with the ith-simulation, in the first example, are used as hard data in the ith-simulation of the second 
example. The 𝑂𝐹 computed the MSE between the measured (ℎQ) and simulated (ℎb) pressure heads: 
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𝑂𝐹(𝒞(𝑥)) =
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where 𝑀 = 21, the number of head observations. The number of calls to the flow simulator was fixed to 2000. 
Table 1 indicates the hydrogeological properties used to model the confined aquifer. 

Table 1 – Hydrogeological properties of the five units (kx, ky: permeability along x, y directions; φ: porosity). 

Unit kx (mD) ky (mD) φ (%) 
Facies 1 (Shadow green) 1050 1050 0.22 
Facies 2 (Medium green) 850 850 0.20 
Facies 3 (Light green) 750 750 0.23 
Facies 4 (Yellow green) 40 40 0.17 
Facies 5 (Yellow) 20 20 0.16 

 
The calibration results of one hundred simulations are shown in Figure 3(a). A two-order reduction amplitude 
of the objective function is obtained by using 2000 optimized cosine functions. One can note a rapid reduction 
of 𝑂𝐹 at the beginning which questions the need to calibrate 2000 cosine functions instead of, say, 100 cosine 
functions. A practitioner could have decided to stop the calibration process at 100 cosine functions and obtain 
satisfactory results according to his objectives. Note that the stopping criteria of an inversion depend on the 
objectives of the calibration, the quality and precision of the indirect data, and the execution time of the 
forward model (e.g., a flow simulator). Fig. 3. (f-h) presents respectively the variogram for the first L-GRF and 
the second L-GRF. The match between the average variograms of the hundred simulations is close to the 
theoretical variogram for both L-GRFs indicating that S-STBM can preserve the spatial correlation.  

 

Figure 3 – a-b) Respectively, reference and calibrated categorical field (black circles: localization of the 100-conditioning 
data). c-d) Respectively, reference and calibrated pressure heads (black Xs: measured pressure heads; black circle: 

pumping well location). e) Evolution of the objective function (black line: mean objective function over 100 calibrated 
realizations; gray lines: objective function of the 100 calibrated realizations). f) Isotropic exponential variogram of the 

first L-GRF (effective range of 15m). g-h) Respectively, anisotropic cubic variogram along the x-direction (ax=50) and the 
y-direction (ay=10) (black line: theoretical model; gray lines: experimental variogram of the 100 calibrated realizations; 

blue markers: mean experimental variogram).  
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4. Discussion and Conclusions 

This article presented a novel methodology to apply S-STBM with PGS methods. The optimization, which 
normally requires a multivariate approach in PGS, is reduced to a univariate optimization process by taking 
advantage of the properties of the S-STBM method combined with an approach based on gradual deformation. 
The case studies result demonstrates the effectiveness of S-STBM for borehole conditioning, an alternative to 
the reputedly slow Gibbs sampler when multiple boreholes are available, and for calibrating a geological 
model to pressure heads. 

Our proposed parameterization using gradual deformation is compared to a multivariate approach and a 
univariate calibration method based on alternating phase calibration (i.e., calibrating each phase one by one). 
Fig.4 presents the results of the comparison for example 2. The left image shows the OF evolution based on 
the number of calls to the flow simulator (fixed at 800 calls) and the right illustrates the OF evolution based on 
the number of simulated cosine functions for each L-GRF. One can see that the multivariable approach is less 
efficient (red line) than the two univariate scenarios due to the time required to find an adequate phase vector 
(10 calls to perform one iteration for the multivariate optimization compared to 2 for the parametrization and 
4 for the alternating approach). Note that parametrization using gradual deformation and the alternating 
approach shows similar calibration results when compared to the numbers of calls to the flow simulator (Fig.4, 
left one). In a case with more variables to calibrate, it is likely that the parametric approach becomes more 
efficient than the alternating phase approach. This however is for the moment speculative and remains to be 
validated. 

 

Figure 4 – Comparison of three optimization strategies. Left) based on the number of calls to the flow simulator. Right) 
based on the numbers of simulated cosine functions. (Black: parametrization using gradual deformation; Red: 

multivariate optimization using a Nelder–Mead method; Blue: univariate optimization using an alternating scheme with 
one phase at a time). 

Note that a few tens or hundreds of cosine functions allow a reduction of the OF by 1 to 2 orders of magnitude 
(see. Fig. 2(e) and Fig. 3(e)). This is probably sufficient to stop the calibration accounting for modeling errors 
and the accuracy of real data or to account for errors in borehole positioning, and geological units 
identification. Fig. 2(e) and Fig. 3(e) also show that the calibration of borehole data requires more cosine 
functions than the calibration of pressure heads. This is not an issue because the objective function associated 
with the borehole conditioning requires only calculation of distances, a fast step compared to the use of a flow 
simulator. To be mentioned, the hydrogeological problem took more time than conditioning the data, despite 
the significant difference in the number of cosine functions generated. 
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The main drawback of PGS methods lies in the determination of variogram models for L-GRFs. Since several 
sets of parameters may satisfy the field data, it may be difficult to justify the use of a given variogram model. 
In practice, the geological interpretation by geoscientists or analogous models may guide the variogram model 
selection. 

To check the impact of the calibration of borehole data and pressure heads, the average of the facies 
proportions for 100 realizations and the percentage of well-simulated facies with respect to the reference facies 
were computed. In addition, the Kullback-Liebler divergence was computed relatively to the reference facies 
proportions. Note that the borehole data represents only 1% of the field. Table 2 resumes the results of four 
cases: uncalibrated (b), calibrated only to borehole data (c) and to pressure heads (d), and calibrated to both 
borehole data and pressure heads (e). Scenario a) is the reference. Results indicate that the scenario calibrated 
on heads alone (d) marginally improves the well identified facies (22.6 vs 20.8) and deteriorates the KL-
divergence with respect to uncalibrated case (b) (0.45 vs 0.32). The scenario calibrated on only the borehole 
facies (c) improves significantly the well identified facies (36.7 vs 20.8) and leaves the KL-divergence similar 
to the uncalibrated case (0.31 vs 0.32). Finally, jointly calibrating to heads and facies (e) gives the best results 
on proportions of well classified (38.2 vs 20.8) and KL-divergence (0.20 vs 0.32). Hence, although the pressure 
heads are not very informative about the facies when used alone, combining them with the facies observed in 
boreholes enables to significantly reduce the KL-divergence and increase slightly the facies identification with 
respect to using only facies in boreholes. Note that these results are obtained despite facies proportions 
observed in boreholes were quite different from facies proportions over the whole reference field as indicated 
by the KL-divergence of 1.68 for the boreholes.   

Table 2 – Proportion of facies before and after calibration. a) Reference. Averages of 100 realizations b) uncalibrated, c) 
calibrated to observed facies, d) calibrated to pressure heads, e) calibrated to observed facies and pressure heads. 

Unit a) b) c) d) e) Proportion of observed 
facies in boreholes 

Facies 1 (Shadow green) 21.4 24.3 19.8 24.6 20.5 16 
Facies 2 (Medium green) 14.0 14.8 13.7 15.0 13.5 11 
Facies 3 (Light green) 18.8 17.9 18.1 16.3 17.9 22 
Facies 4 (Yellow green) 26.2 24.4 25.6 25.6 25.9 28 
Facies 5 (Yellow) 19.6 18.8 22.8 18.6 22.2 23 
Percentage of points with coincident 
simulated/reference facies (%) - 20.8 36.7 22.6 38.2 - 

KL-Divergence with respect to reference a) - 0.32 0.31 0.45 0.20 1.68 
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Abstract 

We study the combination of inverse autoregressive flows (IAF) and variational inference (VI) within the 
context of geophysical inverse problems as an efficient alternative to Markov chain Monte Carlo (MCMC) 
sampling. Variational inference seeks to approximate a target distribution parametrically for a given family of 
distributions by solving an optimization problem. It provides a computationally-efficient approach that scales 
well to high-dimensional problems, but the approximation is limited by the chosen parameterized family of 
distributions. To enable more expressive approximate distributions, we explore the combination of VI with 
inverse autoregressive flows (IAF), in which a series of neural transport maps transform an initial density of 
random variables into a target density. In this VI-IAF routine, samples from a normal distribution are pushed 
forward through a series of invertible transformations onto a variational density approximating the 
unnormalized posterior. The parameters of the IAF are learned by minimizing the Kullback-Leibler divergence 
between the variational density and the unnormalized target posterior distribution. In our study, we use a 
deep generative adversarial network (GAN) to generate complex geostatistical priors described by the low-
dimensional, latent space of the GAN. We compare this approach against popular methods for solving 
geophysical inverse problems such as deterministic gradient-based methods and MCMC sampling. Even if 
previous attempts to perform gradient-based inversion in combination with GANs of the same architecture 
were proven unsuccessful, preliminary results with VI-IAF on channelized subsurface models and linear 
physics suggest that this approach recovers the true model reliably and provides appropriate uncertainty 
quantification with a relatively low amount of computation. As a next step, we will test this routine on cases 
where the forward model is nonlinear. As most of the nonlinearity comes from the GAN generator, we expect 
the results to be similar to those obtained in the linear case.
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Abstract 

Electrical Resistivity Tomography (ERT) is a geophysical method used to characterize the spatial distribution 
of subsurface electrical properties such as electrical resistivity. These geophysical data are acquired by 
injecting electrical current into the ground via a pair of electrodes and measuring the resulting potential field 
by a corresponding pair of potential electrodes. As standard practice, the observed measurements are then 
converted into apparent resistivity, a weighted average of the resistance of earth materials to current flow. 
These data may be used to map geological structures, fractures, stratigraphic units, groundwater bodies, as 
they depend on variations in lithology, porosity, permeability, water saturation and fluid conductivity. 

To predict the model parameters from the field data we need to solve a geophysical inverse problem. From 
near-surface characterization studies, this is often accomplished with deterministic resistivity inversion 
models. Deterministic approaches have three main limitations: the predicted models are smooth 
representations of the subsurface; the predicted models are highly dependent on the initial solution; and have 
limited uncertainty assessment capabilities. We propose herein an alternative stochastic resistivity inversion 
method based on geostatistical simulation and co-simulation as model perturbation technique. A set of 
electrical resistivity models are generated conditioned to the available resistivity borehole data, and assuming 
a spatial continuity pattern as revealed by a variogram model retrieved directly from the data. From the set of 
simulated models, we use a forward model that allows to compute synthetic apparent resistivity models. 
These are locally compared against the observed one. The portions of the geostatistical realizations that ensure 
the maximum similarity between predicted and observed apparent resistivity are stored in an auxiliary 
volume along with the similarity coefficient. Both auxiliary volumes are used as secondary variable in the co-
simulation of a new set of models in the subsequent iteration. 

We illustrate this methodology by applying it to a set of two-dimensional profiles obtained from an ERT 
survey carried out at Neves-Corvo mining site (Alentejo region, Portugal). The survey was performed to 
characterize the spatial distribution of the aquifer located within the mine premises. This methodology was 
able to predict electrical resistivity models from the data obtained in the ERT survey. All the predicted models 
are able to generate synthetic geophysical data that match the observed one (around 0.90 similarity coefficient) 
while reproducing the borehole data and the imposed variogram models. We show the ability of the model to 
assess uncertainty and compare the results against a conventional deterministic inversion methodology 
available at a commercial software. 

Research financed by the InTheMED project, which is part of the PRIMA Programme supported by the 
European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No 1923.
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Abstract 

Rocks’ permeability (𝑘) is a property describing the ease with which a given fluid in the subsurface can flow 
through the pores of a rock sample. The prediction of its spatial distribution is thus fundamental when 
characterizing a hydrocarbon or CO2 reservoirs. Nonetheless, rocks’ permeability is strongly sensible to 
several geological factors, such as the sedimentary and diagenetic processes, and to the rocks’ structures, 
causing its values to change over several order of magnitude even in a single rock type (Ma, 2019; Yang, 2017). 
Different approaches have been developed to predict the spatial distribution of 𝑘 for a given area of interest. 
Data-driven approaches, such as stochastic sequential simulation (Deutsch, 2002), aim at the reproduction of 
the experimental data distributions (marginal and joint distributions of 𝑘 and other rock properties, often 𝜙) 
and their spatial patterns (e.g., a variogram model). On the other hand, rock-physics-modelling-based  
methods consist in using empirical or heuristic equations (e.g., Kozeny-Carman, RGPZ) (Mavko et al., 2019; 
Glover et al., 2006) to estimate 𝑘 form 𝜙, given other rocks’ parameters such as grain size, cementation and 
tortuosity.  

Iterative geostatistical seismic inversion methods (e.g., Azevedo et al., 2020; Bosch et al., 2010; Grana et al., 
2017, 2021; Sen, 2006) use a data-driven approach to predict the distribution of the subsurface’ rock physics 
and its uncertainties by relating 𝑘, 𝜙 and acoustic impedance (𝐼c) to seismic reflection amplitudes. Hence, the 
objective function is the minimization of the seismic data misfit. Nonetheless, the strong variability of 𝑘 can 
represent a limitation to these methods: since the stochastic models’ perturbation lacks any physics constraint, 
the simulated models can finally fit the observed seismic but lack a physical or geological meaning. 

To tackle such issues, we propose an iterative geostatistical seismic inversion algorithm to invert for litho-fluid 
facies and 𝑘, where each model is simulated following a data-driven approach, but its iterative optimization 
is also conditioned to rock physics constraints. For a post-stack seismic volume, we first simulate facies models 
by means of 1D first-order Markov chain Monte Carlo method, then we sequentially simulate 𝑘 and co-
simulate 𝜙 and 𝐼c. We can thus calculate a synthetic seismic volume from the reflectivity model obtained from 
the 𝐼c model. Through a pre-calibrated facies-dependent rock physics models, we calculate a second volume 
of 𝑘 from the simulated 𝐼c and 𝜙 models. This estimated model represents the expected 𝑘 given the available 
rock physics a priori knowledge, for the 𝐼c	and synthetic seismic data generated. Thus, the algorithm’s 
objective function is the minimization of both the seismic data misfit and of the two permeability models.  

We validated the proposed inversion algorithm through a synthetic, one-dimensional case study application, 
comparing the results to those of a purely data-driven approach. We also apply the method to a three-
dimensional real dataset. The algorithm generated accurate models of permeability, demonstrating to predict 
better results than those of conventional approaches.   
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Abstract 

Water plays a crucial role in human life and in all its activities. For this reason, all water resources and in 
particular groundwater should be managed in a sustainable way in order to satisfy current needs and without 
causing environmental consequences. Unfortunately, economies based on intensive agriculture and industrial 
production lead to unsustainable use of water, the effect of which also includes the contamination of aquifers. 
In this context, the identification of the location of the contaminant source with its release history has attracted 
great attention within the scientific community called upon to provide theoretical methods to limit the spread 
of the contaminant. To identify remediation strategies immediately is essential to have a tool that can provide 
accurate results in real time. With this aim, surrogate models can become the conceptual models of primary 
choice being able to study forward and inverse transport problem using a number of observations, which is 
not much greater than the unknown parameters to be calculated, reducing in this way the computational cost 
compared with other more complex models. Data-driven surrogate models lead to the field of Artificial 
Intelligence where neural networks, trained on a finite dataset, are able to estimate the desired output by 
means of a learning process emulating the behavior of the human brain. 

In this work, a feedforward artificial neural network (FFWD-ANN) has been developed to analyze different 
cases as surrogate model. The investigated domain has been selected from a literature study (Ayvaz, 2010) 
and the training dataset has been randomly developed by means of the Latin Hypercube Sampling in order to 
reduce the number of forward simulations. Initially, the network has been trained to solve forward transport 
problem. In the proposed approach, the ANN well estimates the pollutant concentrations in 7 monitoring 
wells, at different times, by using as input data the release history at two contaminant sources with known 
locations. Then, the surrogate model has been trained to deal with inverse transport problem related to 
different application cases: 1. estimation of the release history at one contaminant source with known location; 
2. simultaneous estimation of the release history and location of one contaminant source; 3. estimation of the
release history at two contaminant sources with known location; 4. simultaneous estimation of the release
history at two contaminant sources with known location and error on observations.

The results have been compared with literature data (Ayvaz, 2010; Jamshidi et al. 2020). Artificial Neural 
Network seems to be well suited to dealing with this type of forward and inverse problems, preserving the 
reliability of the results and reducing the computational burden of numerical models. 

This research was developed under the scope of the InTheMED project. InTheMED is part of the PRIMA 
Program supported by the European Union's Horizon 2020 Research and Innovation Program under Grant 
Agreement No 1923. 
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Abstract 

The near-surface is a complex and highly dynamic region of the Earth, resulting from interacting processes of 
both natural and anthropogenic origin, and characterized by physical properties with small-scale 
heterogeneity. Due to its importance in many human activities, an accurate characterization of the spatial 
distribution of near-surface properties is often challenging, yet essential in different activities of socio-
economic, mineral resources and environmental fields. The modelling of these systems is often based on 
discrete direct observations acquired through conventional invasive sampling techniques, such as boreholes 
and trenches, that have proven competent in one-dimensional modelling but are expensive and impractical to 
acquire in some sites, cause ecosystem tampering and reveal limitations in capturing the spatial variability of 
near-surface properties. From the pressing need to make the characterization more detailed and 
comprehensive, but also with reduced costs, time efficiency and operational flexibility, the characterization of 
the near-surface through geophysical surveys have been emerging as powerful techniques in modelling the 
complexity of these systems through indirect, and virtually continuous, measurements of the subsurface 
physical properties. Within the most common near-surface geophysical techniques, frequency-domain 
electromagnetic (FDEM) induction and electrical resistivity tomography (ERT) methods have demonstrated 
their efficiency to characterize heterogeneous subsurface systems due to their simultaneous sensitivity to two 
key subsurface properties, electrical conductivity (EC) and magnetic susceptibility (MS). Due to differences in 
the spatial resolution of both methods, these are often acquired jointly, but interpreted and modelling 
separately.  

The prediction of reliable subsurface models from these geophysical data can be solved through a joint 
geophysical inverse problem. However, handling the differences in the resolution and nature of both methods 
is not straightforward and prone to uncertainties. On the other hand, the joint inversion leverages the benefits 
of each method individually. 

In this work, we show an iterative geostatistical joint FDEM and ERT inversion technique. A geostatistical 
framework is used to couple both data domains in a consistent spatial model. The method is illustrated with 
its application to synthetic and real data sets where the benefits of the joint approach are discussed against the 
individual inversions.  
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Abstract 

Contaminant events disrupt the stability and resilience of increasingly vulnerable soil and groundwater 
resources. Identifying where, when, and how much contaminant spill is released into aquifers is critical for 
improving remediation techniques and clarifying environmental liability, but commonly troublesome in 
contaminant sites where sparse observation networks are the unique tool to define the status of soil and 
aquatic ecosystem. Such ecosystems usually are subject to coupled nonlinear physicochemical processes and 
dynamic environmental conditions. Despite constrained model assumptions and demanding computational 
time, hydrogeology stochastic inverse models (SIM) are considered excellent methodologies to extract 
consistent and valued input-parameter information from non-sampled areas by analysing predictive 
responses of the system in comparison with actual observed responses. Among the SIM stands out the data 
assimilation method ensemble Kalman Filter (EnKF) capable of simultaneously estimating model parameters 
(hydraulic conductivity and porosity), as well as the location of the contaminant source and the evolution of 
the discharge mass flow from observations of the piezometric head and concentration (state variables). After 
an initialization of the model parameters, the steps of the EnKF are (i) prediction of the state variables by direct 
modelling from time k = 0 and (ii) updating the estimated values of the parameters from the deviations 
between observations and predictions. Parameters and corrected variables serve as input data in the next 
iteration at time k + 1. It is well known that EnKF performance has been favourable when modelling 
conservative transport. The main objective of this study is to move forward into reactive transport. For that 
purpose, this study applies the ensemble Kalman Filter (EnKF) data assimilation for transport inverse 
modelling when biodegradation and isotherm sorption processes are present. We test spurious effects of 
aquifer heterogeneity, multicomponent and multiparameter reactive cases, as well as the influence of 
initial/boundary conditions in synthetic scenarios.  
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Abstract 

Knowledge of hydraulic and transport characteristics of natural aquifers is fundamental for planning several 
engineering applications as groundwater extraction or recharge systems and prediction of spatio-temporal 
evolution of subsurface contamination. Tracer tests are often used to characterize aquifers. In this work, we 
apply an ensemble Kalman filter technique to infer the hydraulic conductivity field from concentration data 
obtained by means of tracer test. The methodology is validated using data collected in a laboratory sandbox 
that reproduces a vertical cross-section of an unconfined aquifer, in which the flow is driven by constant 
gradient head at the upstream and downstream boundary. The porous medium consists of glass beads of 
different diameters that reproduce a heterogeneous field and fluorescein sodium salt is used as tracer. The 
plexiglass walls of the sandbox allow to collect concentration values by means of an image technique process. 
Breakthrough curves recorded at different monitoring points are used as observations in an inverse problem 
aimed at estimating the hydraulic conductivity field. Here, we propose to apply the Ensemble Smoother with 
Multiple Data Assimilation (ES-MDA) to solve this type of inverse problem. ES-MDA is an iterative data 
assimilation method that updates the unknown parameters based on the knowledge of observed 
measurements and a numerical model that describes the forward process. In this case, the groundwater flow 
and transport processes are modeled with MODFLOW and MT3DMS software, respectively. Two different 
approaches are tested to estimate the heterogeneous hydraulic conductivity field. In the first test, the 
conductivity field is estimated using the pilot points method: the hydraulic conductivity is estimated in a finite 
number of points, which are then interpolated using an Ordinary Kriging to obtain the solution over the whole 
domain. This reduces the number of parameters to be estimated and consequently the computational burden. 
On the other hand, the pilot point approach can lead to over-smoothed solutions. 

In the second test, a fully parameterized approach is adopted. The hydraulic conductivity is estimated at each 
cell of the discretized domain leading to a large number of unknown parameters. The second approach can 
better characterize the true heterogeneity but requires more computation time than the first one. To reduce the 
computational burden, which is related to the ensemble size used to perform ES-MDA, some corrections on 
the algorithm, such as covariance localization and covariance inflation, are applied. This leads to promising 
results for both approaches showing the capability of Ensemble Kalman filter methods to handle tracer test 
data with the aim to characterize the aquifer conductivity. 
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Abstract 

Many approaches have been proposed to tackle the challenges of non-stationarity in multiple-point statistics 
(MPS) simulations, including the usage of “auxiliary variables” (AVs) maps. However, obtaining the 
additional information required to draw these AV maps can be challenging, and in many cases these maps are 
drawn with subjective ad hoc procedures. Recently, some authors proposed a hierarchical simulation 
procedure based on a tree-like frame of binary sequential indicator simulations (SIS), with a simulation tree-
like frame based on the textural hierarchy of facies. In this work a similar approach is proposed by using MPS 
instead of SIS; in addition, this work explores the possibility of using a different tree-like frame based on 
stratigraphic hierarchy and relative chronology. 
The proposed approach is demonstrated by using outcrops of alluvial sediments to reconstruct a three-
dimensional (3D) volume. First, the outcrops are analyzed to extract a tree-like frame describing the hierarchy 
of facies. Then, the frame is used to decompose the outcrop into multiple bi-dimensional (2D) training images 
(TIs), each of which represents the spatial distribution of a simplified interpretation of the outcrop, based on 
the given hierarchy of facies. Depending on the criteria used to build the tree-like frame, these 2D TIs are 
composed of a relatively low number of facies; it is therefore straightforward to use a sequence of 2D 
conditional simulations (s2Dcd approach) to build 3D TIs for each branch of the frame. Finally, the obtained 
3D TIs are used to perform a sequence of MPS simulations, nested accordingly to the aforementioned tree-like 
frame, resulting in a 3D reconstruction of the spatial distribution of the alluvial sediments considered. 

On 2D test cases, the results obtained with the proposed approach are comparable with the results obtained 
by handling non-stationarity using AVs, with the advantage that the proposed approach does not require an 
AV map. In addition, the decomposition of the simulation problem into smaller groups of facies, allowed to 
have more control on the low-level reconstructions made with the s2Dcd approach to obtain the 3D TIs, and 
consequently to improve the final 3D reconstruction. 

In conclusion, with the additional effort required to conceptualize a hierarchy of facies, the proposed approach 
appears as a reliable alternative to obtain non-stationary MPS simulations without the need of additional 
information, as for example the one required by the use of AVs.  
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Abstract 

Developments in multiple-point-statistics (MPS) algorithms over the last decade have made the approach 
more and more viable for practical applications. Nowadays, MPS can reproduce structures better than ever 
before, opening opportunities for increasingly complex simulations. However, such good results can only be 
achieved with a good algorithmic parametrization. Often, finding an appropriated parametrization for MPS 
simulation is more an art than a science, which requires training and practice.  

While it is generally possible to find an acceptable parametrization with a try-and-error approach for 
univariate or sometimes bivariate problems, this solution is impractical when the number of variable increases 
or with complex parameters. A classical solution, adopted in previous work, is to find an optimal set of 
parameters with optimization approaches using an objective function over simulations. These approaches 
require a significant number of simulations, and therefore an important computation time.  

Here, we propose a novel approach that uses exclusively the training image to find an optimal set of 
parameters. The main advantage of our approach is to remove the risk of over-fitting the objective function. 
At the same time, we don’t use an optimization approach, which means that we find a set of parameters in a 
predictable time. Our approach is based on the understanding of how the simulation algorithms works. We 
developed it for QuickSampling (QS), but it can be easily adaptable to any other pixel-based MPS algorithm.
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Abstract 

Wind resource assessment in the context of renewable energy feasibility studies is of utmost importance for 
the urgent need of decarbonizing the energy sector. Researchers from multiple disciplines typically rely on 
long term, albeit spatially coarsely resolved datasets, e.g., Numerical Weather Prediction (NWP) model 
outputs, to conduct local wind energy/resource studies. Attempts have been made to downscale these 
products, via dynamical or statistical downscaling, which turned to be computationally expensive without 
being able to reproduce the spatiotemporal variability inherent in wind speed complex patterns. While finer 
spatial resolution datasets have been made available e.g., Synthetic Aperture Radar (SAR) data, the revisit 
frequency of the satellites carrying relevant sensors leads to temporal gaps not allowing for a complete 
assessment of the wind resource potential. 

In this study, we employ a geostatistical framework, namely Multiple-Point Statistics (MPS) to simulate wind 
speed patterns in the offshore area around Cyprus, aiming to fill Sentinel-1 information gaps where they exist. 
The data used comprise Sentinel-1A and 1B SAR gridded estimates of the surface wind speed derived from 
Interferometric Wide (IW) Swath beam mode under Vertical-Vertical (VV) + Vertical Horizontal (VH) dual 
polarization operation and Uncertainties in Ensembles of Regional Reanalyses (UERRA) data after being 
resampled to the satellite’s spatial resolution (1km), both validated against in-situ measurements from local 
meteorological coastal stations. More precisely, pairs of UERRA and Sentinel-1 co-registered information are 
used as Training Images (TIs) from which wind patterns are eventually inferred. The selection of TIs used to 
create each TI set is based on Root Mean Square Error (RMSE) minimization while the recently developed 
Quick Sampling (QS) algorithm was used to generate the MPS simulations. Multiple realizations are generated 
to provide an uncertainty estimate of the final output while synthetic image time-series were evaluated via 
cross-validation as well as by statistical comparison against Sentinel reference data.  

As an illustration of the methodology, offshore wind speed images are simulated at a spatial resolution of 1km 
for the offshore areas of Cyprus over a 2-years period. Results imply that the proposed methodology could 
form a consistent time series of high spatial resolution wind speed images leading to temporally finer resolved 
offshore wind power estimates for the region, provided the above procedure is generalized for a longer time- 
period.  
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Abstract 

Data merging is the common geostatistical practice of interpolating point data using gridded images as 
predictive variables (e.g. remote sensing imagery, modeled rasters, or reanalysis datasets) to obtain continuous 
representations for spatial analysis and numerical modeling. Multiple-point-statistics (MPS) algorithms 
[1,3,2], which preserve complex spatial data patterns for realistic representations, are generally not applicable 
in this case, since they can only operate on gridded images instead of sparse data points. In this study, we 
propose a strategy to extend the MPS concept to the merging of any point data with gridded images. 

The novel approach, called pattern-to-point (P2P) catalogs, retrieves from the gridded image the pixel values 
close to any data point. This way, a catalog of local pixel patterns associated to point data is obtained. The P2P 
catalog, built over one or multiple images, constitutes a training dataset that can be used to project the point-
data information over the whole grid, where point data are not present.  

We present here a preliminary test where the P2P technique is used to bias-correct a weather radar image for 
the estimation of 10-min rainfall intensity over Switzerland (MeteoSwiss). The national rain gauge dataset is 
used as ground-truth point data source to merge with the radar images. The bias-corrected value for every 
pixel is obtained by retrieving the pixel pattern in its neighborhood and looking for similar patterns in the P2P 
catalog, built using 10-min images from 2 days of radar activity. The found ensemble of similar patterns carries 
the associated point data, whose values are averaged to estimate the bias-corrected value for the target pixel. 
The process, repeated for every pixel, generates a corrected image revealing small-scale structures, which 
reflect the latent information in the P2P catalog.  

The P2P strategy presents as a promising approach that can be used for different applications, including: 1) 
deriving space-varied probability distributions of a point variable, 2) realistic gridded estimations based on 
the projection of historical data, and 3) assessing the uncertainty on each grid value where the scale jump 
between point and grid is taken into account. 
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Abstract 

The growing use of remote sensing data (typically multi / hyperspectral satellite / drone images) has pushed 
towards the exploitation of indirect information known throughout the field of study. The use of remote 
sensing as indirect information, together with a limited number of direct and indirect field data, should 
improve the characterization of the target variable. The main challenge is to seek and quantify the possible 
correlations between the available information. 

The starting point is the regularized nature of the information associated with the pixels. This prevents the 
identification and quantification of existing correlations, if at a scale below resolution. 

An intuitive correlation study must be handled carefully for many reasons, including the position model of 
each terrestrial data within the corresponding pixel resolution surface, being the sample positions isotopic / 
heterotopic with the pixel or randomly distributed. 

Often, comparing different images ignores some important issues. A typical problem is that images derived 
from different satellites / drones / equipment have different pixel resolution, therefore different support 
(heterosupport). Finally, the image data is generally heterotopic, even in the case of the same scene shot by the 
same satellite at different times. 

Grasping the meaning of an experimental correlation coefficient becomes a sensitive issue. This contribution 
focuses on these issues and by a geostatistical approach explains the different meaning of apparently 
equivalent operations. There is a need to deepen the geostatistical co-regionalization analysis to quantify and 
overcome the inaccuracies and uncertainties of any experimental correlation study. And the solution tool 
remains the modelling of the cross covariance for different supports.  
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Abstract 

The earth’s surface changes are driving by climate change and human activates. Remote sensing techniques 
are very useful detecting and analyzing the change on the earth’s surface. Change detection captures the 
spatial changes from multi temporal satellite images due to manmade or natural phenomenon. It is of great 
importance in remote sensing, monitoring environmental changes and land use –land cover change 
detection. Remote sensing satellites acquire satellite images at varying resolutions and use these for change 
detection. This paper focusses on the vulnerability of oasis agriculture and extract changes in agricultural 
land for about 30 years from 1989 to the present using Landsat series and Sentinel series and visualized them 
using RGB color combined techniques. The results show that agricultural land is disappeared or desertified 
at the Ili River basin and at the foot of the zhongar-Alatau Mountain and that there are several years of fallow 
even in areas where agriculture is active. Using the Zharkent region in the irrigated alluvial fan of 
zhongar-Alatau Mountain of eastern Kazakhstan as an example, we classify the farm field changing 
using Landsat TM and Sentilel-2 satellite imagery and identify of vulnerability to the disappearance of 
oases farmland. China's investment in agriculture could lead to the depletion of water resources in the 
region. Because oases agriculture is one of the most vulnerable anthropogenic landscapes to climate change 
and human activates. Central Asia is one of the arid regions highly vulnerable to water scarcity. Located in 
Central Asia, Kazakhstan is characterized as a semi-arid region which includes dry steppe land in the 
south. Agriculture carried out in this area is typically oasis farmland with water taken from local rivers 
used for irrigation. During the former Soviet Union, irrigation projects were widely carried out to expand 
agricultural land, and large-scale irrigation projects were created in several areas. Therefore, many 
irrigated farmlands were abandoned due to the collapse of the former Soviet Union. However, China's 
investment in Kazakhstan agriculture is cultivating once abandoned agricultural land and developing new 
oases agricultural land. Contextual research identifies how Chinese policies may encourage agribusiness 
investment for food exports as possible disruptions to national and regional food supply. However, to 
date Central Asia provides <1% of Chinese agricultural imports. Evaluating infrastructure change is essential 
to understand OBOR impacts on environments and societies, with the food-water nexus a particular concern 
in Central Asia including Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. Limited 
Chinese imports of Central Asian agriculture suggests the region’s food security will not be significantly 
altered by the Belt and Road Initiative. Locals want to invest in China OBOR, but depletion of water 
resources could put the region in poverty again in the future. 
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Abstract 

In remote sensing analysis, bands information and indices are used to map different regionalized variables, 
for different applications of earth and environmental sciences. Moreover, the classifications methods can be 
used to differentiate the areas, and then with kriging tools to estimate the target variable values and variances. 
Often, these analyses are enriched by the validation of the obtained estimation maps using values from in-situ 
samples. On the other hand, to get effective and reliable maps, there is the need of high amount of data. In this 
research, remote sensing studies (statistical studies, spectrum view and unsupervised classifications) applied 
to Copernicus Sentinel-2 images have been combined with advanced geostatistical approaches (Gaussian 
simulation using Turning Bands -TBs- algorithm) to map the distribution of one critical raw material 
(Vanadium element-V2O5). The approach has been applied to a Bauxite tailings case study in Greece.  

Simulation results have been obtained for the Vanadium grade variability maps in the Bauxite tailings for 1000 
realizations using infield samples as direct and Sentinel-2 images as an auxiliary variable. To test the 
simulation results, the reproduced experimental variograms of the realizations are compared with the selected 
variogram model of the Vanadium concentration and they have shown a coherent convergence. Hence, 
despite the lack of band-ratio existence for Vanadium identification in remote sensing analysis and, on the 
other hand, the limited number of initial sampling of data for geostatistical analysis, the integration of both 
approaches has generated appropriate maps of Vanadium grade distribution, within the Bauxite tailings case 
study.  
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Abstract 

The A-InSAR Time Series (TS) interpretation is advantageous to understand the relation between ground 
movement processes (subsidence, slow-moving landslides) and triggering factors (snow, heavy rainfall), both 
in areas where it is possible to compare satellite TS with in-situ monitoring systems, and in areas where in situ 
instruments are scarce or absent. To identify areas of potential interest for significant ground deformations 
exploiting large datasets of satellite data, a new methodology ("ONtheMOVE" - InterpolatiON of SAR Time 
series for the dEtection of ground deforMatiOneVEnts) has been developed. The methodology has been tested 
on Sentinel-1 data available for the period 2016-2020 and covering Piemonte region, in an area prone to slow-
moving landslides. 

This work aims to classify the trend of TS (uncorrelated, linear, non-linear); to identify breaks in non-linear 
TS, i.e. those events (heavy rainfall, the melting of snow) when a significant modification of the TS trend is 
observed; to provide the descriptive parameters (beginning and end of the break, length in days, cumulative 
displacement, the average rate of displacement) that characterize the magnitude and timing of changes in 
ground motion. 

To determine whether a TS has a trend, the Spearman statistical test is used. It is a non-parametric test which, 
based on the Spearman correlation index, determines whether two series are related to each other. Only TS 
that have evidence of any trend are considered in the discrimination between linear or non-linear trends. 

To identify the type of the trend, four methodologies, based on two different approaches, are available: a 
statistical one (Terasvirta test and the White test) and a mathematical-modelling one (Polynomial-Pl and 
Polynomial Moving Average-PlMa). For the statistical approach, the function that synthesizes the data is 
composed of a non-linear and a linear part and after having optimized the coefficients, it checks if the 
coefficients of the non-linear part are zero by means of a score test. For the mathematical-modelling approach, 
the two methods are based on the interpolation of data with polynomials.  

This innovative methodology can be applied to any type of satellite datasets characterized by low or high-
temporal resolution of measures, it can be tested in any areas to identify any ground instability (slow-moving 
landslides, subsidence) at local or regional scales. It provides a supporting and integrated tool with 
conventional methods for planning and management of the area, both for back analysis and for near real-time 
monitoring of the territory and it can be helpful as regards the characterization and mapping of the kinematics 
of the ground instabilities, the assessment of susceptibility, hazard and risk.  
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Abstract 

Open oak woodland is an agroforestry system found in drylands where the extreme temperatures and the 
scarcity of water are becoming more frequent and more extensive, which may affect the ecosystem 
productivity and the services it provides. The landscape of open oak woodland is characterized by a low 
density of trees. The decline of open oak woodland in Southern of Portugal is a problem widely accepted by 
the scientific community. Many factors have been identified as contributing to this process, but a deep 
understanding that could help setting effective actions to mitigate and/or revert the process is still lacking.  

The analysis of vegetation phenology (i.e. the annual cycle of vegetation growing) over time and space using 
Earth Observation (EO) data can provide important clues to better understand resilience and adaptation of 
open oak woodland to present climate changes and predict the long-term effects. That is the case of Moderate 
Resolution Imaging Spectroradiometer data (MODIS), which is acquiring data since 2000 and delivers daily 
information with ~250m pixel size. However, the relative coarse spatial resolution presents limitations in the 
space domain for these studies. More recently, the Sentinel 2 A/B, developed under the Copernicus Program, 
was launched in 2015 and 2017. This system has 2-3 days temporal frequency in mid-latitudes. These images 
have a high spatial resolution, of about ~10m pixel size, but the time-frequency approximates that of the 
MODIS. 

The proposed methodology simulates daily radiometric vegetation index images, on the spatial resolution of 
Sentinel imagery using geostatistical stochastic simulation. We assume that the pixel value observed by 
MODIS can be approximated by applying the instrument’s point spread function (PSF) over Sentinel 2 pixels 
observed at the same date. Then, we use an inverse modelling approach and direct sequential simulation with 
local means to simulate the daily images on the Sentinel 2 spatial resolution. This is an iterative process which 
starts by estimating the NDVIs from historical data and characterizing the relationship between MODIS and 
Sentinel 2 pixels. Then, using the MODIS vegetation index image we derive the map of local means and 
simulate in the spatial resolution of Sentinel 2. The images are upscaled using the PSF and compared with 
MODIS pixels. The mismatched between predicted and observed images are used to generate a new set of 
images at the Sentinel 2 spatial scale. The process iterates until satisfy to a convergence criterium. 
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Abstract 

In-place automatic inclinometers are typical devices used to monitor displacements of extremely slow to slow-
moving landslides.  

The landslides monitored by automatic inclinometers in Piemonte region (Northern Italy) are characterized 
by slow and very slow deformation velocity, with rate of displacement ranging between 1.6 m/yr and 13 
m/month and 16 mm/yr and 1.6 m/yr. 

This work aimed to develop a novel method of displacement data analysis acquired by automatic 
inclinometers from the RERCOMF dataset (landslide regional monitoring networking) of ARPA Piemonte.  

The methodology was developed in four steps. i) Evaluation of the reliability of the instrument: errors and 
instrumental anomalies were identified and erased by the time series scanning through a R based algorithm, 
carrying out the standard deviation of the time series movements standard deviations. At the same time the 
algorithm analyses potential anomalies based on Azimuth angle displacement from a specific Local Azimuth, 
assigned to each landslide and related to the main direction of landslide displacement. All values exceeding+/- 
30° the landslide Local Azimuth are considered anomalies and they are removed from the time series. ii) 
Individuation of significant moments of acceleration (events) in the rate of landslide displacement, retrieving 
in the time series a change in the rate of cumulated movements and velocities for a large range of duration. 
An event was indeed defined as a period, characterized by an increase in the rate of velocity respect to the 
typical trend of the deformation measured by an inclinometer. iii) The significant acceleration events 
clustering allowed to classify landslides in terms of total displacement, duration and average velocity. 
Duration and displacement data of the identified events were then implemented in a Hierarchical Cluster 
Analysis (HCA) through the software Orange 2.7, aiming to group events with similar kinematic behaviour 
during active phases corresponding to events.  

iv) Reconstruction of thresholds of the triggers which influence the change in the rate of displacement to 
forecast the possible rate of displacement, according to the values of the main triggers influencing the 
deformation pattern of a phenomenon, considering the landslide geomorphological features and the complex 
groundwater hydrodynamics, that generally determine complicated hydro-mechanical relationships between 
rainfalls, groundwater table depth, snow-melting and the resulting deformation. 

This method has shown excellent results in terms of time series errors identification, similar for both landslides 
characterized by seasonal movements and for landslide with strong response towards intense meteorological 
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events. The R based algorithm is capable to filter and analyse the time series of automatic inclinometers, 
starting from the raw data and giving back the landslide kinematics. 
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Abstract 

Improving the methods of determining the spatiotemporal distribution and uncertainty of environmental 
variables can provide considerable benefits when developing risk assessments and strategic policies. In the 
nonparametric geostatistical framework, the uncertainty assessment methods include the histogram via 
entropy reduction. 
In particular, in the spatial context, the histogram via entropy reduction method has been recently proposed 
as a novel nonparametric interpolation approach which can be used for estimating threshold-exceeding 
probabilities without assuming any underlying distribution for the data under study, and avoiding the 
modeling stage of the spatial correlation shown by the data. Hence, this approach is just based on the empirical 
probability distribution to quantify the spatio-temporal dependence and it minimizes entropy of the space-
time predictions. The histogram via entropy reduction methodology is in between the geostatistical and 
statistical learning approach since the estimations are based on the empirical data recalling some fundamental 
aspects of Geostatistics. 
Some advances of this technique already applied in the spatial context, can be further proposed for the spatio-
temporal domain and the advantages in using this method are thoroughly pointed out in a case study 
concerning spatiotemporal measurements of an environmental variable. This includes the following main 
steps: i) evaluation of spatio-temporal dependence, ii) definition of an aggregation method, and iii) prediction 
of the target conditional probability distribution. A comparison with indicator kriging results is also discussed.  
 

 

Acknowledgments 

This contribution is supported by the Project “Rigenerazione Sostenibile dell’agricoltura nei territori colpiti da 
Xylella fastidiosa”. 
  



SPATIO-TEMPORAL PROCESSES  geoENV2022 

 
 

111 

 

COVARIANCE MODELING FOR SPATIO-TEMPORAL COMPLEX-VALUED RANDOM 
FIELDS  

Sandra De Iaco (1)* 

University of Salento, Lecce, Italy (1) 
* Corresponding author: sandra.deiaco@unisalento.it 

Abstract 

In Geostatistics, the theory of complex-valued random fields is often used to provide an appropriate 
characterization of vector data with two components. In this context, constructing new classes of complex 
covariance models represents a goal of particular interest in the scientific community and in many areas of 
applied sciences, such as in electrical engineering, oceanography or meteorology, since they are used in 
structural analysis and, then for stochastic interpolation or simulation. 

In the literature, there are various contributions focused only on modeling the spatial evolution of vector data 
with a reasonable representation on a complex domain. However, the temporal perspective is analyzed 
separately or used to model time-varying complex covariance models. However, it is surely challenging to 
propose some advances in modeling the joint spatial and temporal behavior of phenomena, whose 
decomposition in modulus and direction is natural. 

After introducing the theoretical background regarding the complex formalism of a spatio-temporal random 
field, some techniques for building new families of spatio- temporal models are discussed. Then, the spatio-
temporal complex modeling is applied to sea current data referred to the US East and Gulf Coast.  The results 
regarding a comparative analysis between different complex-valued covariance models are also presented.  
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Abstract 

Spatio-temporal statistical methodologies have been widely applied, developed and demanded in 
epidemiology. Point process theory offers an appropriate scenario to analyse the spatio-temporal variation of 
the expected number of disease cases from information collected at the individual level, that is, reports of 
residential location and onset. 

We illustrate an application of point process tools to study deaths caused by COVID-19 disease in the 
Santander-Colombia metropolitan area. Specifically, we explore the geographical distribution of the number 
of fatalities per unit area through the estimation by using adaptive kernels (kernels with variable bandwidth).  

Adaptive kernels make it possible to capture the local variation in the intensity without the bias problem 
induced by high clustering and without relying on a single bandwidth: a sensible choice with critical 
consequences on the estimation quality. Lastly, we address the issue of the efficient computation of the 
adaptive spatio-temporal estimator.  
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Abstract 

Regional rainfall frequency analyses are based on rain gauge data that are affected by spatio-temporal 
discontinuities and gaps that can significantly influence the results of the statistical analyses. Neglecting the 
shorter series leads to ignore an amount of information that can be essential to correctly understand the spatial 
variability of the extremes. 

In this work we present an application of the patched kriging technique, a year-by-year application of ordinary 
kriging equations, that overcomes the data inconsistency by considering all the records, independently on the 
length of the time series. The methodology is applied to short-duration (1 to 24 hours) annual maximum 
rainfall depths recorded by rain gauges coming from the recently-released Improved Italian – Rainfall Extreme 
Dataset (I2-RED). The trend with elevation is removed and, for each duration, the sample variogram is 
evaluated as the mean of the annual variograms weighted on the number of active rain gauges for any year. 

The sequential application of the ordinary kriging allows to reconstruct a “rainfall data cube” and a “variance 
data cube” in the (x, y, t) space. By coring the cube along the t-axis, a complete series of measured and 
estimated values is obtained at each location. The cored series are then analyzed using the L-moments, 
weighted on the related series of kriging variance, to consider the different nature of the data (measured and 
estimated). 

To overcome inconsistency of the L-moment statistics, a bias-correction procedure is introduced, that 
preserves the coefficient of variation from the smoothing effect induced by the spatial interpolation. 

The methodology is applied to short-duration annual maximum rainfall depths in the whole North-West of 
Italy, that includes areas affected by the most severe extremes on record. The dataset used in this study covers 
the period 1928-2021, including the all-time Italian record events up to now, some of which observed in 2021 
(377.8 mm / 3h, 496 mm / 6h, 740.6 mm / 12h).  
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Abstract 

Many areas across the world have seen a rise in extreme fires in recent years. Those include South America 
and southern and western Europe. They also include unexpected places above the Arctic Circle, like the fires 
in Sweden during the summer of 2018. The Mediterranean area is no stranger to these changes and fires have 
become larger and more frequent. 

Wildfires have already been studied with point process approaches to assess how the spatial heterogeneity of 
wildfires observed over a given time interval depends on the spatial distribution of land use information such 
as vegetation, urban zones or wetlands. In practice, raw data of environmental covariates is usually only 
available at very specific spatial and temporal scales, often with very high resolution, and comes in different 
numerical formats. Appropriate preprocessing of such data is important to obtain good predictive models. 
The high spatio-temporal dimension of wildfire data (observed occurrences and control cases without 
occurrences) has often been coped with by separating the data into subsets or by strongly aggregating them, 
by year or by spatial areas. Some recent approaches have concentrated more strongly on studying the interplay 
of the spatial and temporal structures, or on the usefulness of a specific Fire Weather Index aggregating 
weather data. 

We here use log-Gaussian Cox process models, which have already been identified as useful models for 
wildfires since they allow capturing spatio-temporal aggregation structures through random effects.  

Fitting spatial point process models to some spatial patterns is computationally intensive due to - amongst 
other things - the large number of individual points in the data set. Here, we consider a rather different 
situation. In some applications difficulties arise since point patterns with only a very small number of points 
can be collected, due to logistic limitations (e.g. for reasons of accessibility). These patterns are sometimes too 
small to justify the modelling of a single pattern. However, if replicates exist, a joint model of all replicates 
with a factor that accounts for variability among replicates caused by different conditions on different days 
may be more suitable.  

Bayesian inference for log-Gaussian Cox processes using the integrated nested Laplace approximation (INLA) 
is now well-established, but remains challenging with the high dimension of our regression model. Instead of 
simplify the problem building a grid structure to populate the information in our work, we explore a scenario 
in which complex spatio-temporal structures can be incorporated into the analysis of a deeper understanding 
of forest fires. We follow the spread of forest fires across the Mediterranean basin, examining the role of 
multiple random fields in capturing spatial-clustering dynamics in the fires distribution across the 
Mediterranean between 2003 and 2013. Here, the point pattern of forest fires also reflects the observation 
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process. Accounting for spatially varying detection probability is a particular strength of inlabru, which was 
developed specifically for (ecological) datasets with complex observation processes.
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Abstract 

In recent years, spatial data from satellite imagery, remote sensing, monitoring stations, and surveys can be 
collected in large quantities and at high spatial resolutions. The analysis of these data is crucial for decision-
making in many disciplines such as epidemiology, climatology, and the environment. An ongoing challenge 
when analyzing this type of data is the spatial data misalignment problem which occurs when data at different 
spatial scales need to be combined. In this work, we propose a new ensemble-based approach for the analysis 
of spatially misaligned data that combines multiple statistical and machine learning approaches including 
Bayesian hierarchical models, geostatistical models, random forest, and gradient boosted trees. Our new 
approach improves prediction and propagates uncertainty from individual models for better uncertainty 
quantification. We assess the predictive performance of the ensemble-based approach by conducting a 
simulation study. Specifically, we generate spatial datasets that can appear in real settings, fit the individual 
and ensemble approaches, and compute a number of prediction error measures using spatial cross-validation 
designs. The new approach is also used to predict fine particulate matter emissions (PM2.5) in the UK in 2020 
using data obtained from monitoring stations and satellite-derived environmental indicators. Our results 
show that the new proposed ensemble-based approach combines the strengths and drawbacks of each base 
model and result in a better final prediction. Moreover, the ensemble approach also shows robustness and 
generalization and avoids extremely deviant predictions. We believe our approach can enhance the reliability 
of predictions of outcomes obtained by combining multiple spatially misaligned data and can help decision-
making in a wide range of disciplines.
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Abstract 

Large-scale quantitative assessment of water resources, useful in hydrology, hydrogeology, agriculture and 
other fields, is generally carried out using models that take into account soil-atmosphere interaction and the 
hydraulic behaviour of the soil. In particular, the shallow part of the soil is normally in unsaturated condition. 
The water content and the water potential in the soil are the main quantities to be considered in the evaluation 
of the hydraulic behaviour of unsaturated soil in relation to rainfall events. These quantities are very useful, 
because they constitute the input data for different types of water balance models. Most of these models are 
based on the knowledge of Soil Water Characteristic Curves (SWCC) which indicate a "two-way" link between 
soil water content and water potential. These curves have one or more hysteresis, linked to the drying and 
wetting cycles that soils undergo under natural conditions. Experimental evidence shows that the "biunivocal" 
link between the quantities considered does not allow the real behaviour of a partially saturated soil to be 
adequately reproduced. In the modelling chain, this mismatch between model and physical reality can lead to 
an inappropriate estimate of water resources in relation to rainfalls.  

The aim of this research is providing a detailed description of interaction between soil and atmosphere. In 
particular, we intend to find a new function linking the quantities involved in the phenomena, namely soil 
volumetric water content, soil-water potential, air temperature, rainfalls, solar radiation. To achieve this goal, 
we treat long time series of field experimental data from continuous monitoring over a long period at two 
experimental sites, representative of two different geological contexts in Oltrepò Pavese. These data are treated 
in the framework of robust statistics by using the combination of robust parametric and non parametric models 
(LTS, SSA and SARIMA). We show that the fitted models can capture the relevant features present in the data 
and therefore can be used for prediction purposes.  
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Abstract 

The studied site is a research center, located in the South of France. Three superimposed aquifers are in 
presence in, from surface to the bottom, Quaternary, Miocene and Cretaceous Formations. Since its creation 
in the 60’s, the center started to constitute a groundwater monitoring network dedicated to the survey of both 
groundwater levels and quality which has continuously evolved as a function of different needs: survey of 
new facilities, knowledge of flow rate and directions, improvement of the 3D hydrogeological model used for 
flow and transport simulations, etc. The monitoring network is now composed of about 400 wells distributed 
in the three superimposed aquifers. Geostatistical methods are used to help optimizing this network in terms 
of number and spatial distribution of the wells. 

An original and specific geostatistical methodology is developed. First, variograms are calculated on hydraulic 
heads surveys at different dates, covering a large panel of hydrological conditions. Corresponding head 
distributions are then constructed by kriging. For some aquifers, as hydraulic heads and elevations are 
correlated, a smoothed digital elevation model is used as external drift. Then, trajectories starting from specific 
zones (facilities, buildings, etc.) are calculated, in order to highlight the downstream positions. Finally, a 
network optimization is conducted in two parts: (i) sequential addition of new wells, allowing to decrease the 
uncertainty on hydraulic head in zones with few information, (ii) sequential removal of existing wells, on a 
criteria of geometrical redundancy. During the calculation process, several constraints are imposed such as a 
minimal thickness of geological formation to add a new well and a minimal distance to existing or added 
wells. This sequential and automated process allows testing different configurations (number of 
additions/removals, minimal distance between wells, etc.). 

As a result, the study leads to an optimized list of new wells to add and existing wells to remove for each of 
the three aquifers. This list is a precious base for optimization that has to be further discussed, taking into 
account other criteria that cannot be included in the geostatistical analysis, e.g. presence of faults, available 
space, access conditions for drilling machines, etc.  
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Abstract 

River water and sediment composition serve as a sentinel to monitor the complex responses of watersheds 
across time and space. Watersheds exhibit a wide variety of spatial heterogeneity in landscape properties, 
inherent nonlinearity of many geohydrological processes and vary over time for the effects of climate changes 
and disturbance by human activities. Progress in developing new methods able to capture process interactions 
and comprehensive behaviors may favor an enhanced prediction of watershed’s response to perturbing 
factors.  

This work presents a critical comparison among three statistical indices developed under the Compositional 
Data Analysis theory (Aitchison, 1982): i) the cumulative sum of unclosed perturbation factors of each 
composition (row sum) with respect to a pristine reference, ii) the robust Mahalanobis distance, describing the 
compositional differences from the same reference and, iii) the geometric mean of the entire composition. All 
these measures are supposed to monitor the collective evolution of a geochemical composition, keeping record 
of the interactions among constituents thus allowing to go beyond the analysis of single variables. The 
performance of these indices was tested to examine source-to-sink compositional changes in the surface water 
and stream sediment composition of the Tiber River, the third-longest Italian river (Gozzi & Buccianti, 2021).  

The results allowed to understand how geochemical footprints propagate downstream and compare the 
fluctuations with the variations in the drained lithotypes and other external drivers (e.g., soil use, human 
impact and morphometric parameters). All indices provide consistent results, especially if the chemical species 
having a high variability are treated separately and low values in the dataset are rare. Under this latter 
condition, the geometric mean of the composition shows a high correlation with the cumulative sum of 
unclosed perturbation factors. This evidence suggests that the geometric mean could find potential 
applications as a simple and effective monitoring index of the complex relationships among the involved 
constituents. Conversely, the robust Mahalanobis distance occasionally diverges from the other two measures 
and its application is recommended for larger datasets. These methods could be applied to different river 
basins worldwide and may facilitate the comprehension of their complex responses to potential 
hydrogeochemical threats. 

 

Aitchison, J., (1982). The Statistical Analysis of Compositional Data (with discussion). Journal of the Royal Statistical 
Society Series B, 44(2), 139–177.  
Gozzi, C. & Buccianti, A., (2021). Assessing Indices Tracking Changes in River Geochemistry and Implications for 
Monitoring. Natural Resource Research. Accepted for Publication (NARR-D-21-00982R2).  
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Abstract 

A range of statistical models have been introduced for spatiotemporal modeling of environmental problems. 
However, their implementation to streamflow is still rare. The marginal use is likely due to the specific tree-
wise structure of river networks, which poses particular challenges. Additionally, catchments vary in several 
aspects as anthropogenic influences, variability of meteorological conditions and heterogeneity of the 
catchment characteristics. To our knowledge there exists no study, that tries to model monthly low flow in 
one spatiotemporal model. Therefore, we propose to adapt an approach originally used for air-pollution 
modeling (Lindström et al. 2013, Szipro et al. 2010) for modeling monthly low flow in Austria. 

The 260 gauging stations used for this study are located in Austria. All these stations are consistently 
monitored between 1982 and 2018 and they cover about 60% of the national territory of Austria. Out of each 
daily time series we calculate the 5% monthly quantile – monthly Q95 – and standardize the values by each 
catchment area (L s-1 km -2). Our approach is based on temporal empirical orthogonal functions (EOFs), that 
should capture the temporal part of the model. The EOFs are weighted by a universal kriging structure. A 
seasonal, annual, or overall trend can be included by spatiotemporal covariables, which are based on 
meteorological data. Variable selection for the universal kriging structure and the spatiotemporal covariables 
is performed by a linear boosting model and a bootstrapping approach. Finally, the space-time residuals are 
estimated by kriging. We propose to not solely use geographic coordinates but extend kriging to a 
physiographic space – using principal components and partial least square components. To avoid one large 
heterogeneous region in the single model framework, we added a functional clustering approach for smaller 
homogeneous regions. Cluster membership is estimated by conditional forest. 

We found that this single model framework can yield high prediction accuracy of a cross validated R2 of 0.8. 
The main performance gain can be reached by dividing the study area through functional clustering. 
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Abstract 

The accurate estimation of aquifer recharge is essential for the sustainable utilization of groundwater 
resources. This task is particularly challenging for large watersheds where the definition of the surface-
subsurface system parameters is associated with high level of uncertainty. In this paper a water flow model, 
based on the coupling of the HYDRUS and MODFLOW computer programs, is developed for the Konya 
closed basin, one of the major agricultural regions of Turkey. Groundwater levels in the semiarid basin have 
experienced rapid decline in recent years due to excessive over exploitation. The problem is exacerbated by 
the large number of unregulated groundwater extraction wells, estimated to exceed 70,000 in number, 
rendering the estimation of actual groundwater extraction rates highly uncertain. The regional model, 
covering an area of about 62,000 km2, simulates unsaturated vertical flow through the vadose zone and 
groundwater flow through the underlying aquifer system. The model combines data collected at different 
scales including point groundwater level data, meteorological data and pumping test data, as well as land use, 
surface topography and water content (GRACE) satellite data. To better define the precipitation spatial 
distribution, cokriging of precipitation and topography data was used. Groundwater extraction data were 
estimated based on historical agricultural yields and crop water demands.  Historical groundwater level data 
were used as the main calibration parameter. Results show that the model was able to reproduce the observed 
groundwater level trends of the past 2 decades.  Recharge areas are mostly located in the higher elevation 
regions of the basin with water flowing towards the central portions of the plain where intensive irrigation is 
located.  The modeling results underscore the impacts of the expansion of irrigated lands and the switch to 
more water-demanding crops on the basin’s overall water deficits.

Research financed by the InTheMED project, which is part of the PRIMA Programme supported by the 
European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No 1923.
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Abstract 

Landslides are a constant source of danger for people and the built environment. Even with more recent 
advancements in this field, these natural hazards still represent a serious problem worldwide and the effort to 
mitigate their impact has driven the development of specific knowledge, technology, and practices.  

One of the current challenges involves the ability of new sensors and monitoring techniques to provide a 
considerable amount of information, which should necessarily be addressed with automatic procedures for 
their elaboration. A possible approach relies on the introduction of algorithms from the field of Machine 
Learning applied to the interpretation of the landslide behavior. ML algorithms have key advantages in this 
context: they do not need explicit knowledge or models of the problem, since they learn directly form the 
examination of data. They scale with data, so that they get more accurate when presented with large amount 
of information. Moreover, they can adapt to learn from many different sources like numeric measurements, 
images, text, or sound.  

The methodology here discussed was designed for landslide monitoring and early warning activities based 
on hydrogeological information, with the objective to predict the monitored site behavior few days in advance. 
In particular, input data for this process are displacement measurements, water level, and meteorological 
conditions. The model relies on an Artificial Neural Network that will read the values of these parameters 
measured over a predefined number of consecutive days, predicting the displacement of the day following 
the last observed. While the model is training, the inputs are selected from past data, so that the model’s 
prediction can be compared with already available measurements. The error in the prediction is used to adjust 
the algorithm until it starts to make accurate forecasts. Once the model has reached this stage, it can be shown 
the measurements of the last days, so that in will predict the development of the slope a few days from now. 
Moreover, the presence of several sensors on the studied site could give the possibility to assess the landslide 
behavior in sectors where no monitoring tool is present, thanks to spatial interpolation procedures performed 
on forecasted displacements. 

For these types of algorithms, the addition of irrelevant information can lead to lower accuracy in the results. 
Theoretically, with a large enough dataset, the model should become able to distinguish between useful and 
inconsequential inputs, in practice however it is very hard to have the necessary tools to achieve that. 
Accounting for that, the training process will be performed on models including different subsets of the 
available data, in order to identify the informational value of cross-correlations between monitored 
parameters.  



OTHER  geoENV2022 

 
 

123 

 

MODELING DENSITY DATA ACROSS THE IBERIAN MASSIF (PORTUGAL): RELIABILITY 
ASSESSMENT FOR ENVIRONMENTAL APPLICATIONS  

Filipa Domingos (1)* - Gustavo Luís (2) - Sérgio Sêco (1) - Alcides Pereira (2) 

Laboratory of Natural Radioactivity, University of Coimbra, Department of Earth Sciences, Coimbra, Portugal (1) – 
CITEUC, Centre for Earth and Space Research of the University of Coimbra, University of Coimbra, Coimbra, 
Portugal (2) 
* Corresponding author: lipa_domingos@hotmail.com 

Abstract 

The Basic Safety Standards (BSS) for protection against the dangers pertaining to ionizing radiation were 
established in the Council Directive 2013/59/EURATOM. The main sources of ionizing radiation due to 
exposure to natural gamma-ray emitters, such as 40K and isotopes from the 238U and 232Th decay series, 
including radon (222Rn) and thoron (220Rn), indoors are the materials underlying the buildings (soil and/or 
bedrock) and the building materials. Research efforts have been focused mainly on the underlying bedrock 
materials. However, several authors have reported a significant contribution to the inhalation dose received 
by the population by 220Rn, whose main source are the building materials.  

To assess the safety of building materials, the BSS requires firstly to estimate an activity concentration index 
denoted the I index from the activity concentrations of terrestrial radionuclides (226Ra, 40K and 232Th). This 
index is used as a screening tool to discriminate between “safe” and “unsafe” materials for use in construction. 
If a building material presents an index I greater than 1, then the gamma radiation dose must be estimated 
using other data such as the density, the thickness, and the intended use of the material, among other factors. 
Hence, it is essential to know the density of the materials to ensure reliable dose estimates. The density of the 
materials can be determined by several methods. Direct measurement of density may be performed using 
standardized methods whereas indirect assessments of density make use of the chemical and/or mineralogical 
composition of the materials. Despite the existence of easily applicable methods to determine density 
accurately in the case of rocks, density data are often drawn from literature according to lithology.  

Geochemical databases constructed from local studies on rock geochemistry drawn from literature have been 
demonstrated effective to estimate the content of terrestrial radionuclides over geological units because they 
generally lack geospatial information, constraining the use of geostatistical tools. In this work we compare 
density results obtained using a standardized method (EN 1936:2006) to density results estimated from 
geochemical analysis results taken from literature using different models. Direct measurements of density 
ranging from 2100 kg/m3 to 3900 kg/m3 were drawn from a database with over 560 assays carried out in hand 
specimens of rock samples collected from northern to southern Portugal in the Iberian Massif (of Variscan 
age). The main objective is to determine whether geochemical results may provide accurate density estimates 
which may be used to improve dose estimates as well as in other applications, such as exploration by 
gravimetric methods and resource estimation. The reliability of density data estimated from geochemical data 
is discussed. Spatial correlations of density between and within geological units are assessed using 
geostatistical tools and the possibility of using density results estimated from literature data in spite of the lack 
of geospatial information is investigated.  
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Abstract 

The subregion of west of Antioquia is characterized by having a low concentration of rural land ownership 
and a high process of ecological destruction and desertification in the municipalities of Santa Fe de Antioquia, 
San Jeronimo, Anza and Sopetran. Tropical dry forest biome, secondary vegetation and growing forests, sub-
Andean forest, Andean forest, wetlands and associated forests, paramos and basal forest predominate. 

One of the most transcendental environmental problems has been the transformation of natural ecosystems 
that have become mainly agroecosystems and due to population growth, due to the development of new 
projects among other anthropic activities. In the subregion, the main global greenhouse effect (GHG) emissions 
are from deforestation, livestock, agriculture, energy consumption and sanitation. Climate risk of the 
subregion is medium to low. 

Through geostatistical techniques of simulation conditioned by turning bands, different scenarios were 
assessed for the analysis of environmental contamination of metals Co, Cu, Cr, Ni, Pb and Zn in an area of 
7,291 km2, equivalent to the subregion of west from department of Antioquia. Geostatistical cartography 
prepared for the pessimistic case of each of the metals analyzed, report anomalous values above the standards 
established for the different types of rocks in the region, which would generate a moderate relative mobility 
for water contamination, being subjected to surface weathering processes under oxidation conditions in acidic 
environments. Under reducing conditions, the simulated elements would have a behavior of relative 
immobility and would offer environmental danger for the soils of the region.  

Potentially dangerous anomalous values were estimated for Co ≥ 130 mg/kg, Cu ≥ 1,710 mg/kg, Cr ≥ 2,507 
mg/kg, Ni ≥ 138 mg/kg, Pb 165 ≥ mg/kg and Zn ≥ 1,170 mg/kg, which are consistent with volcano-sedimentary 
sequences and acid to intermediate plutonism present in the subregion. Analysis of the samples were carried 
out by optical emission spectrography, which although it is a semi-quantitative method, has made it possible 
to formulate the state of the art of environmental geochemistry and identification of possible vulnerable areas 
in order to focus future studies, with greater precision and detail.  

Regarding mining activity, 20% of the area of the subregion is concessioned for extraction of minerals and 34% 
is requested as mining concession contracts, whose activities of exploration and exploitation of georesources 
are concentrated mainly in Au and precious metals. Mine with the highest production is of the gold type and 
is in in the municipality of Buritica, which intends to extract 9.1 tons of gold each year; however, medium, and 
small-scale mining represents 93% of mining titles and applications in the area of influence.  

If the high concentrations of Co, Cu, Cr, Ni, Pb and Zn in some soils of the subregion of west of Antioquia are 
validated, their use should be technically oriented to economic activities in the mining sector, instead of 
agriculture and livestock, due to the negative impacts of heavy metals on human health.  
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Abstract 

The Colombian Northwest region is a tectonically active territory located in the Colombian Oceanic Mobile 
Belt (Cuna and Calima Terrains). The Colombian Seismological Network was created in 1999.  Since its 
creation up to 2018 it has registered around 11,000 earthquakes in the Antioquia state, 3,000 of those have 
surface activity with average magnitudes of 2 and a maximum of 5.2 on the Richter scale, which means an 
important surface activity related to active geological faults. A geostatistical analysis focused on the simulation 
by turning bands was elaborated, whose procedure was to transform available seismic data to Gaussians 
(Anamorphosis), elaborate a variographic analysis, generate the simulation and make the automatic 
cartography. The structural geostatistical analysis showed an anisotropic behavior with a strong nugget effect 
and two preferential directions according to azimuth N10° and N100°, where the first one is representative of 
the maximum continuity of the seismic activity in and is mostly coupled to the preferential direction of the 
geological faults in the Antioquia region. Three cases of analysis are presented: the average of 100 simulations, 
the pessimistic and the optimistic cases. For the pessimistic case, the greatest susceptibility to surface 
microseismic activity in Antioquia region are identified in Urabá (Turbo, Murindó), the far southwest (Urrao, 
Salgar- Ciudad Bolívar), the west (Frontino, Cañasgordas), and the north (Ituango, Sabanalarga). Historically, 
two macro-seisms stand out; the Turbo earthquake of September 7, 1882 at 3:20 a.m. local time of intensity X, 
which has been associated with the Mutatá Fault located in the area, with unquantified ecological damage.  
The second one occurred in Panama (former Colombian territory) with the collapse of buildings and loss of 
human life. The earthquake generated a tsunami that mainly affected the San Blas Archipelago, where several 
waves about 3 meters high caused numerous damages and 65 death people. Other secondary effects in nature 
such as ground cracking, liquefaction and landslides were also reported. The Murindó earthquake occurred 
on October 17th and 18th of 1992, with 6.6 Mw and 7.1 Mw magnitudes, respectively. These events caused 
significant damage in the region, where 32 municipalities were affected, 17 of which showed high damages in 
their infrastructure, severe ecological and social damages, for soil liquefaction, landslides, reactivation of the 
Cacahual volcano activity and the fully evacuation of Murindó municipality.  
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Abstract 

Despite the long record of applications and the well-known theoretical framework, geostatistical based 
image/surface texture tools have still not gained a wide diffusion in the context of geomorphometric analysis, 
even for the evaluation of surface roughness. Depending on the disciplines and authors, roughness can be 
considered a synonym of surface texture (as in this presentation) or as a specific component of it (e.g., 
according to surface metrology), referred to short-range spatial variability of surface roughness. Surface 
roughness, in its general meaning, is a complex multiscale and directional property of topographic surfaces; 
accordingly, multiple roughness-related metrics can be defined. In this context, geostatistical spatial continuity 
indices are capable to characterize multiple aspects of surface texture, by means of interpretable metrics. 
Moreover, the geostatistical indices can be adapted and mixed with other geocomputational approaches, 
tailoring the algorithms for the geomorphometric analysis. In this presentation, an ad-hoc implementation for 
the analysis of high resolution digital terrain models is presented, outlining the main characteristics and 
potentialities of the approach. The considerations are valid also for image analysis, for example in the context 
of remote sensing and applied geophysics. 
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